Skip to main content

AsA/DHA Redox Pair Influencing Plant Growth and Stress Tolerance

  • Chapter
  • First Online:
Ascorbic Acid in Plant Growth, Development and Stress Tolerance

Abstract

In a continuously changing environment plants are exposed to adverse stress conditions, such as sunlight, drying, cold, salinity, pollution, or heavy metals, which influence plant growth and result in the generation of reactive oxygen species (ROS). These small and highly reactive molecules have important cell signalling information concerning the change in the environmental and developmental conditions when maintained at proper cellular concentrations. However, during stress conditions, ROS levels in cells can greatly increase and cause oxidative stress by modifying other reactive species, proteins, or lipids. Therefore, appropriate regulation of ROS has a significant impact on plant development, growth, and survival. Ascorbic acid (AsA) as a major antioxidant in plant cells and its oxidized form dehydroascorbate (DHA) play a key role in redox state-based signalling mechanisms by detoxification of ROS and its products, as well as transmission of redox signals. Furthermore, DHA by itself also presents unique functions: cell cycle progression sensing and regulation, modulation of metal stress responses, and DHA adducts seem to be involved in oxidative stress-mediated cellular toxicity. It has become clear that the changes in the pool and ratio of the AsA/DHA redox pair by both growth and environmental cues modulate gene expression and protein levels resulting in increased stress tolerance. In the recent years, this important redox couple (AsA/DHA) has been of increasing interest to better understand the mechanisms of adaptive plant responses and stress tolerance towards abiotic and biotic stress. In this chapter, an overview of the literature is briefly presented in terms of the role of AsA/DHA redox pair in plant growth, and abiotic and biotic stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arrigoni O, De Tullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta 1569:1–9

    Article  CAS  PubMed  Google Scholar 

  • Arrigoni O, De Gara L, Tommasi F, Liso R (1992) Changes in the ascorbate system during seed development of Vicia faba L. Plant Physiol 99:235–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asard H, Barbaro R, Trost P, Bérczi A (2013) Cytochromes b561: ascorbate-mediated trans-membrane electron transport. Antioxid Redox Signal 19:1026–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bángegyi G, Csala M, Szarka A, Varsányi M, Benedetti A, Mandl J (2003) Role of ascorbate in oxidative protein folding. Biofactors 17:37–46

    Article  Google Scholar 

  • Bartoli CG (2006) Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J Exp Bot 57:1621–1631

    Article  CAS  PubMed  Google Scholar 

  • Batth R, Singh K, Kumari S, Mustafiz A (2017) Transcript profiling reveals the presence of abiotic stress and developmental stage specific ascorbate oxidase genes in plants. Front Plant Sci 8:198. https://doi.org/10.3389/fpls.2017.00198

    Article  PubMed  PubMed Central  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273. https://doi.org/10.3389/fpls.2013.00273

    Article  PubMed  PubMed Central  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt K (2003) Antioxidant, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum A (2016) Stress, strain, signaling, and adaptation–not just a matter of definition. J Exp Bot 67:562–565

    Article  CAS  PubMed  Google Scholar 

  • Borraccino G, Mastropasqua S, De Leonardis S, Dipierro S (1994) The role of the ascorbic acid system in delaying the senescence of oat (Avena sativa L.) leaf segments. J Plant Physiol 144:161–166

    Article  CAS  Google Scholar 

  • Bostock RM, Pye MF, Roubtsova TV (2014) Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annu Rev Phytopathol 52:517–549

    Article  CAS  PubMed  Google Scholar 

  • Botanga CJ, Bethke G, Chen Z et al (2012) Metabolite profiling of Arabidopsis inoculated with Alternaria brassicicola reveals that ascorbate reduces disease severity. Mol Plant-Microbe Interact 25:1628–1638

    Article  CAS  PubMed  Google Scholar 

  • Buettner GR, Jurkiewicz BA (1996) Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res 145:532–541

    Article  CAS  PubMed  Google Scholar 

  • Burkey KO, Eason G, Fiscus EL (2003) Factors that affect leaf extracellular ascorbic acid content and redox status. Physiol Plant 117:51–57

    Article  CAS  Google Scholar 

  • Chalapathi Rao ASV, Reddy AR (2008) Glutathione reductase: a putative redox regulatory system in plant cells. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stresses in plants. Springer, Berlin, pp 111–147

    Google Scholar 

  • Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Gallie DR (2006) Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiol 142:775–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Gallie DR (2012) Induction of monozygotic twinning by ascorbic acid in tobacco. PLoS One 7:e39147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Young TE, Ling J, Chang SC, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. PNAS 100:3525–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin D-C, Hsieh C-C, Lin H-Y, Yeh K-W (2016) A low glutathione redox state couples with a decreased ascorbate redox ratio to accelerate flowering in Oncidium orchid. Plant Cell Physiol 57:423–436

    Article  CAS  PubMed  Google Scholar 

  • Chou PT, Khan AU (1983) L-ascorbic acid quenching of singlet delta molecular oxygen in aqueous media: generalized antioxidant property of vitamin C. Biochem Biophys Res Commun 115:932–937

    Article  CAS  PubMed  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8:e23681. https://doi.org/10.4161/psb.23681

    Article  PubMed  CAS  Google Scholar 

  • Csala M, Braun L, Mile V et al (1999) Ascorbate-mediated electron transfer in protein thiol oxidation in the endoplasmic reticulum. FEBS Lett 460:539–543

    Article  CAS  PubMed  Google Scholar 

  • De Cabo RC, Gonzalez-Reyes JA, Navas P (1993) The onset of cell proliferation is stimulated by ascorbate fee radical in onion root primordia. Biol Cell 77:231–233

    Article  Google Scholar 

  • De Pinto MC, Francis D, De Gara L (1999) The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma 209:90–97

    Article  PubMed  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Cohu CM, Muller O, Iii WWA (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth Res 113:75–88

    Article  CAS  PubMed  Google Scholar 

  • Eskling M, Arvidsson P-O, Akerlund H-E (1997) The xanthophyll cycle, its regulation and components. Physiol Plant 100:806–816

    Article  CAS  Google Scholar 

  • Flandrin A, Allouche S, Rolland Y et al (2015) Characterization of dehydroascorbate-mediated modification of glutaredoxin by mass spectrometry: dehydroascorbate-mediated protein S-ascorbylation. J Mass Spectrom 50:1358–1366

    Article  CAS  PubMed  Google Scholar 

  • Forti G, Ehrenheim AM (1993) The role of ascorbic acid in photosynthetic electron transport. Biochim Biophys Acta Bioenerg 1183:408–412

    Article  CAS  Google Scholar 

  • Fotopoulos V, Sanmartin M, Kanellis AK (2006) Effect of ascorbate oxidase over-expression on ascorbate recycling gene expression in response to agents imposing oxidative stress. J Exp Bot 57:3933–3943

    Article  CAS  PubMed  Google Scholar 

  • Fotopoulos V, De Tullio MC, Barces J, Kanellis AS (2008) Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signaling. J Exp Bot 60:729–737

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005a) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer C, Noctor G (2005b) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  CAS  PubMed  Google Scholar 

  • Franceschi VR (2002) L-ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants. Plant Physiol 130:649–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara A, Togawa S, Hikawa T et al (2016) Ascorbic acid accumulates as a defense response to Turnip mosaic virus in resistant Brassica rapa cultivars. J Exp Bot 67:4391–4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallie DR (2013) The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J Exp Bot 64:433–443

    Article  CAS  PubMed  Google Scholar 

  • Gest N, Gautier H, Stevens R (2013) Ascorbate as seen through plant evolution: the rise of a successful molecule? J Exp Bot 64:33–53

    Article  CAS  PubMed  Google Scholar 

  • Griesen D, Su D, Bérczi A, Asard H (2004) Localization of an ascorbate-reducible cytochrome b561 in the plant tonoplast. Plant Physiol 134:726–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulyás Z, Simon-Sarkadi L, Badics E et al (2017) Redox regulation of free amino acid levels in Arabidopsis thaliana. Physiol Plant 159:264–276

    Article  PubMed  CAS  Google Scholar 

  • Herschbach C, Scheerer U, Rennenberg H (2010) Redox states of glutathione and ascorbate in root tips of poplar (Populus tremula × P. alba) depend on phloem transport from the shoot to the roots. J Exp Bot 61:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Horemans N, Asard H, Caubergs RJ (1997) The ascorbate carrier of higher plant plasma membranes preferentially translocates the fully oxidized (dehydroascorbate) molecule. Plant Physiol 114(4):1247–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5:263–267

    Article  CAS  PubMed  Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245

    Article  CAS  PubMed  Google Scholar 

  • Ioannidi E, Kalamaki MS, Engineer C et al (2009) Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. J Exp Bot 60:663–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jubany-Marí T, Munné-Bosch S, Lopez-Carbonell M, Alegre L (2009) Hydrogen peroxide is involved in the acclimation of the Mediterranean shrub, Cistus albidus L., to summer drought. J Exp Bot 60:107–120

    Article  PubMed  CAS  Google Scholar 

  • Karpinska B, Zhang K, Rasool B, et al (2017) The redox state of the apoplast influences the acclimation of photosynthesis and leaf metabolism to changing irradiance: apoplastic redox state regulates light acclimation. Plant Cell Environ. https://doi.org/10.1111/pce.12960

  • Karyotou K, Donaldson RP (2005) Ascorbate peroxidase, a scavenger of hydrogen peroxide in glyoxysomal membranes. Arch Biochem Biophys 434:248–257

    Article  CAS  PubMed  Google Scholar 

  • Kato N, Esaka M (1999) Changes in ascorbate oxidase gene expression and ascorbate levels in cell division and cell elongation in tobacco cells. Physiol Plant 105:321–329

    Article  CAS  Google Scholar 

  • Kay P, Wagner JR, Gagnon H et al (2013) Modification of peptide and protein cysteine thiol groups by conjugation with a degradation product of ascorbate. Chem Res Toxicol 26:1333–1339

    Article  CAS  PubMed  Google Scholar 

  • Kerk NM, Feldmann LJ (1995) A biochemical model for the initiation and maintenance of the quiescent center: implications for organization of root meristems. Development 121:2825–2833

    CAS  Google Scholar 

  • Kocsy G, Tari I, Vanková R, Zechmann B, Gulyás Z, Poór P, Galiba G (2013) Redox control of plant growth and development. Plant Sci 211:77–91

    Article  CAS  PubMed  Google Scholar 

  • Kotchoni SO, Larrimore KE, Mukherjee M, Kempinski CF, Barth C (2009) Alterations in the endogenous ascorbic acid content affect flowering time in Arabidopsis. Plant Physiol 149:803–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozuleva M, Goss T, Twachtmann M et al (2016) Ferredoxin:NADP(H) oxidoreductase abundance and location influences redox poise and stress tolerance. Plant Physiol 172:1480–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346

    Article  CAS  PubMed  Google Scholar 

  • Kumari R, Kumar S, Singh L, Hallan V (2016) Movement protein of cucumber mosaic virus associates with apoplastic ascorbate oxidase. PLoS One 11:e0163320. https://doi.org/10.1371/journal.pone.0163320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kwon S-Y, Choi S-M, Ahn Y-O et al (2003) Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. J Plant Physiol 160:347–353

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lázaro JJ, Jiménez A, Camejo D et al (2013) Dissecting the integrative antioxidant and redox systems in plant mitochondria. Effect of stress and S-nitrosylation. Front Plant Sci 4:460. https://doi.org/10.3389/fpls.2013.00460

    Article  PubMed  PubMed Central  Google Scholar 

  • Levitt J (1972) Responses of plants to environmental stresses. Academic, New York

    Google Scholar 

  • Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260

    Article  CAS  PubMed  Google Scholar 

  • Liso R, Calabrese G, Bitonti MB, Arrigoni O (1984) Relationship between ascorbic acid and cell division. Exp Cell Res 150:314–320

    Article  CAS  PubMed  Google Scholar 

  • Mano J, Ushimaru T, Asada K (1997) Ascorbate in thylakoid lumen as an endogenous electron donor to photosystem II: protection of thylakoids from photoinhibition and regeneration of ascorbate in stroma by dehydroascorbate reductase. Photosynth Res 53:197–204

    Article  CAS  Google Scholar 

  • Mano J, Hideg É, Asada K (2004) Ascorbate in thylakoid lumen functions as an alternative electron donor to photosystem II and photosystem I. Arch Biochem Biophys 429:71–80

    Article  CAS  PubMed  Google Scholar 

  • Martí MC, Florez-Sarasa I, Camejo D et al (2011) Response of mitochondrial thioredoxin PsTrxo1, antioxidant enzymes, and respiration to salinity in pea (Pisum sativum L.) leaves. J Exp Bot 62:3863–3874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Míguez F, Fernández-Marín B, Becerril JM, García-Plazaola JI (2015) Activation of photoprotective winter photoinhibition in plants from different environments: a literature compilation and meta-analysis. Physiol Plant 155:414–423

    Article  PubMed  CAS  Google Scholar 

  • Millar AH, Mittova V, Kiddle G et al (2003) Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol 133:443–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) The reactive oxygen gene network in plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Miyaji T, Kuromori T, Takeuchi Y, Yamaji N, Yokosho K, Shimazawa A, Sugimoto E, Omote H, Ma JF, Shinozaki K, Moriyama Y (2015) AtPHT4;4 is a chloroplast-localized ascorbate transporter in Arabidopsis. Nat Commun 6:5928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyake C, Asada K (1994) Ferredoxin-dependent photoreduction of the monodehydroascorbate radical in spinach thylakoids. Plant Cell Physiol 35:539–549

    Article  CAS  Google Scholar 

  • Müller-Moulé P, Conklin PL, Niyogi KK (2002) Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiol 128:970–977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munné-Bosch S (2005) The role of α-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748

    Article  PubMed  CAS  Google Scholar 

  • Munné-Bosch S, Queval G, Foyer CH (2013) The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiol 161:5–19

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Allakhverdiev SI, Nishiyama Y (2012) The mechanism of photoinhibition in vivo: re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport. Biochim Biophys Acta Bioenerg 1817:1127–1133

    Article  CAS  Google Scholar 

  • Nardai G, Braun L, Csala M, Mile V, Csermelyt P, Benedetti A, Mandl J, Bánhegyi G (2001) Protein-sulfide isomerase- and protein thiol-dependent dehydroascorbate reduction and ascorbate accumulation in the lumen of the endoplasmic reticulum. J Biol Chem 276:8825–8828

    Article  CAS  PubMed  Google Scholar 

  • Nobuhiro S, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Article  Google Scholar 

  • Noctor G (2006) Metabolic signaling in defense and stress: the central roles of soluble redox couples. Plant Cell Environ 29:409–425

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (2016) Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiol 171:1581–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onda Y (2013) Oxidative protein-folding systems in plant cells. Int J Cell Biol 2013:1–15

    Article  CAS  Google Scholar 

  • Paciolla C, De Tullio MC, Chiappetta A, Innocenti AM, Bitoni MB, Liso R, Arrigoni O (2001) Short- and long-term effects of dehydroascorbate in Lupinus albus and Allium cepa roots. Plant Cell Physiol 42:857–863

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Fartyal D, Agarwal A et al (2017) Abiotic stress tolerance in plants: myriad roles of ascorbate peroxidase. Front Plant Sci 8:851. https://doi.org/10.3389/fpls.2017.00581

    Article  Google Scholar 

  • Pastore D, Trono D, Laus MN et al (2006) Possible plant mitochondria involvement in cell adaptation to drought stress: a case study: durum wheat mitochondria. J Exp Bot 58:195–210

    Article  CAS  Google Scholar 

  • Peterhansel C, Horst I, Niessen M et al (2010) Photorespiration. Arab Book 8:e0130. https://doi.org/10.1199/tab.0130

    Article  Google Scholar 

  • Picco C, Scholz-Starke J, Festa M et al (2015) Direct recording of trans-plasma membrane electron currents mediated by a member of the cytochrome b561 family of soybean. Plant Physiol 169:986–995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pignocchi C, Foyer CH (2003) Apoplastic ascorbate metabolism and its role in the regulation of cell signaling. Curr Poin Plant Biol 6:379–389

    Article  CAS  Google Scholar 

  • Plöchl M, Lyons T, Ollerenshaw J, Barnes J (2000) Simulating ozone detoxification in the leaf apoplast through the direct reaction with ascorbate. Planta 210:454–467

    Article  PubMed  Google Scholar 

  • Potters G, Horemann N, Caubergs RJ, Asard H (2000) Ascorbate and dehydroascorbate influence cell cycle progression in a tobacco cell suspension. Plant Physiol 124:17–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potters G, De Gara L, Asard H, Horemans N (2002) Ascorbate and glutathione: guardians of the cell cycle, partners in crime? Plant Physiol Biochem 40:537–548

    Article  CAS  Google Scholar 

  • Potters G, Horemans N, Bellone S, Caubergs RJ, Trost P, Guisez Y, Asard H (2004) Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiol 134:1479–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regulus P, Desilets J-F, Klarskov K, Wagner JR (2010) Characterization and detection in cells of a novel adduct derived from the conjugation of glutathione and dehydroascorbate. Free Radic Biol Med 49:984–991

    Article  CAS  PubMed  Google Scholar 

  • Reichheld JP, Vernoux T, Lardon F, van Montagu M, Inzé D (1999) Specific checkpoints regulate plant cell cycle progression in response to oxidative stress. Plant J 17:647–656

    Article  CAS  Google Scholar 

  • Roychoudhury A, Basu S (2012) Ascorbate-glutathione and plant tolerance to various abiotic stresses. In: Anjum NA, Umar S, Ahmad A (eds) Oxidative stress in plants: causes, consequences and tolerance. IK International Publishers, New Delhi, pp 177–258

    Google Scholar 

  • Sandermann H, Ernst D, Heller W, Langebartels C (1998) Ozone: an abiotic elicitor of plant defence reactions. Trends Plant Sci 3:47–50

    Article  Google Scholar 

  • Sanmartin M, Drogoudi PD, Lyons T et al (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216:918–928

    CAS  PubMed  Google Scholar 

  • Scheibe R, Dietz K-J (2012) Reduction-oxidation network for flexible adjustment of cellular metabolism in photoautotrophic cells: redox network for adjustment of cellular metabolism. Plant Cell Environ 35:202–216

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V et al (2001) Guard cells signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627–658

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz K-J (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Shao H-B, Chu L-Y, Lu Z-H, Kang C-M (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14

    Article  CAS  Google Scholar 

  • Smirnoff N (1996) The function and metabolism of ascorbic acid in plants. Ann Bot 78:661–669

    Article  CAS  Google Scholar 

  • Szalai G, Kellos T, Galiba G, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J Plant Growth Regul 28:66–80

    Article  CAS  Google Scholar 

  • Szarka A (2013) Quantitative data on the contribution of GSH and complex II dependent ascorbate recycling in plant mitochondria. Acta Phys Plantarum 35:3245–3250

    Article  CAS  Google Scholar 

  • Szarka A, Horemans N, Bánhegyi G, Asard H (2004) Facilitated glucose and dehydroascorbate transport in plant mitochondria. Arch Biochem Biophys 428:73–80

    Article  CAS  PubMed  Google Scholar 

  • Szarka A, Horemans N, Kovács Z et al (2007) Dehydroascorbate reduction in plant mitochondria is coupled to the respiratory electron transfer chain. Physiol Plant 129:225–232

    Article  CAS  Google Scholar 

  • Szarka A, Bánhegyi G, Asard H (2013) The inter-relationship of ascorbate transport, metabolism and mitochondrial, plastidic respiration. Antioxid Redox Signal 19:1036–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi S, Bauwe H, Badger M (2007) Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis. Plant Physiol 144:487–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talla S, Riazunnisa K, Padmavathi L et al (2011) Ascorbic acid is a key participant during the interactions between chloroplasts and mitochondria to optimize photosynthesis and protect against photoinhibition. J Biosci 36:163–173

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  • Tommasi F, Paciolla C, Arrigoni O (1999) The ascorbate system in recalcitrant and orthodox seeds. Physiol Plant 105:193–198

    Article  CAS  Google Scholar 

  • Tommasi F, Paciolla C, De Pinto MC, De Gara L (2001) A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. J Exp Bot 52:1647–1654

    Article  CAS  PubMed  Google Scholar 

  • Tóth SZ, Puthur JT, Nagy V, Garab G (2009) Experimental evidence for ascorbate-dependent electron transport in leaves with inactive oxygen-evolving complexes. Plant Physiol 149:1568–1578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tóth SZ, Nagy V, Puthur JT et al (2011) The physiological role of ascorbate as photosystem II electron donor: protection against photoinactivation in heat-stressed leaves. Plant Physiol 156:382–392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tóth SZ, Schansker G, Garab G (2013) The physiological roles and metabolism of ascorbate in chloroplasts. Physiol Plant 148:161–175

    Article  PubMed  CAS  Google Scholar 

  • Vainonen JP, Kangasjärvi J (2015) Plant signaling in acute ozone exposure: ozone action on plants. Plant Cell Environ 38:240–252

    Article  CAS  PubMed  Google Scholar 

  • Veljovic-Jovanovic SD, Pignocchi C, Noctor G, Foyer CH (2001) Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system. Plant Physiol 127:426–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voss I, Sunil B, Scheibe R, Raghavendra AS (2013) Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biol 15:713–722

    Article  CAS  PubMed  Google Scholar 

  • Vranova V, Rejsek K, Skene KR, Formanek P (2011) Non-protein amino acids: plant, soil and ecosystem interactions. Plant Soil 342:31–48

    Article  CAS  Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond Ser B Biol Sci 355:1517–1529

    Article  CAS  Google Scholar 

  • Wu L-B, Ueda Y, Lai S-K, Frei M (2017) Shoot tolerance mechanisms to iron toxicity in rice (Oryza sativa L.): iron toxicity tolerance in rice. Plant Cell Environ 40:570–584

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto HY, Nakayama TO, Chichester CO (1962) Studies on the light and dark interconversions of leaf xanthophylls. Arch Biochem Biophys 97:168–173

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S (2005) Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana. Plant Cell Physiol 47:304–308

    Article  PubMed  CAS  Google Scholar 

  • Zafra A, Rodríguez-García MI, de Dios Alché J (2010) Cellular localization of ROS and NO in olive reproduction tissue during flowering development. BMC Plant Biol 10:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zechmann B (2017) Compartment-specific importance of ascorbate during environmental stress in plants. Antioxid Redox Signal. https://doi.org/10.1089/ars.2017.7232

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maren Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miret, J.A., Müller, M. (2017). AsA/DHA Redox Pair Influencing Plant Growth and Stress Tolerance. In: Hossain, M., Munné-Bosch, S., Burritt, D., Diaz-Vivancos, P., Fujita, M., Lorence, A. (eds) Ascorbic Acid in Plant Growth, Development and Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-319-74057-7_12

Download citation

Publish with us

Policies and ethics