Skip to main content

Osteoporosis: Diagnosis and Management

  • Chapter
  • First Online:
Pediatric Endocrinology

Abstract

Bone health is now recognized as an important facet of child health with sufficient evidence to support standardized approaches to diagnosis, monitoring, treatment, and prevention. Current management strategies are based on monitoring at-risk children to identify and then treat earlier rather than later signs of osteoporosis in those with limited potential for spontaneous recovery. Research studies addressing prevention of the first-ever fracture are still needed for children who have both a high likelihood of developing fractures and less potential for recovery.

This chapter focuses on the evidence that shapes the current approach to diagnosis, monitoring, and treatment of osteoporosis in childhood, with emphasis on the key pediatric-specific biological principles that are pivotal to the overall approach and on the main questions with which clinicians struggle during routine care. The scope of this chapter is to review the manifestations of and risk factors for primary and secondary osteoporosis in children, to discuss the definition of pediatric osteoporosis, and to provide specific recommendations for monitoring and prevention. This chapter also reviews when a child is a candidate for osteoporosis therapy, which agents and doses should be prescribed, duration of therapy, how the response to therapy is evaluated, and side effects. With this information, the bone health clinician will be poised to diagnose osteoporosis in children, to identify when children need osteoporosis therapy and the clinical outcomes that gauge efficacy and safety of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bachrach LK. Diagnosis and treatment of pediatric osteoporosis. Curr Opin Endocrinol Diabetes Obes. 2014;21:454–60.

    Article  CAS  PubMed  Google Scholar 

  2. Makitie O. Causes, mechanisms and management of paediatric osteoporosis. Nat Rev Rheumatol. 2013;9:465–75.

    Article  PubMed  CAS  Google Scholar 

  3. Saraff V, Schneider J, Colleselli V, Ruepp M, Rauchenzauner M, Neururer S, Geiger R, Hogler W. Sex-, age-, and height-specific reference curves for the 6-min walk test in healthy children and adolescents. Eur J Pediatr. 2015;174(6):837–40.

    Article  PubMed  Google Scholar 

  4. Bianchi ML, Leonard MB, Bechtold S, Hogler W, et al. Bone health in children and adolescents with chronic diseases that may affect the skeleton: the 2013 ISCD pediatric official positions. J Clin Densitom. 2014;17:281–94.

    Article  PubMed  Google Scholar 

  5. Ward LM, Konji VN, Ma J. The management of osteoporosis in children. Osteoporos Int. 2016;27:2147–79.

    Article  CAS  PubMed  Google Scholar 

  6. Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet. 2004;363:1377–85.

    Article  CAS  PubMed  Google Scholar 

  7. Ben Amor IM, Roughley P, Glorieux FH, Rauch F. Skeletal clinical characteristics of osteogenesis imperfecta caused by haploinsufficiency mutations in COL1A1. J Bone Miner Res. 2013;28:2001–7.

    Article  CAS  PubMed  Google Scholar 

  8. Marini JC, Reich A, Smith SM. Osteogenesis imperfecta due to mutations in non-collagenous genes: lessons in the biology of bone formation. Curr Opin Pediatr. 2014;26:500–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rauch F, Lalic L, Roughley P, Glorieux FH. Genotype-phenotype correlations in nonlethal osteogenesis imperfecta caused by mutations in the helical domain of collagen type I. Eur J Hum Genet. 2010;18:642–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pui CH, Evans WE. A 50-year journey to cure childhood acute lymphoblastic leukemia. Semin Hematol. 2013;50:185–96.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, Kaul A, Kinnett K, McDonald C, Pandya S, Poysky J, Shapiro F, Tomezsko J, Constantin C. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 2010;9:77–93.

    Article  PubMed  Google Scholar 

  12. Cummings EA, Ma J, Fernandez CV, Halton J, et al. Incident vertebral fractures in children with leukemia during the four years following diagnosis. J Clin Endocrinol Metab. 2015;100:3408–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. LeBlanc CM, Ma J, Taljaard M, Roth J, et al. Incident vertebral fractures and risk factors in the first three years following glucocorticoid initiation among pediatric patients with rheumatic disorders. J Bone Miner Res. 2015;30:1667–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McMillan HJ, Campbell C, Mah JK. Duchenne muscular dystrophy: Canadian paediatric neuromuscular physicians survey. Can J Neurol Sci Le J Can des Sciences Neurologiques. 2015;37:195–205.

    Article  Google Scholar 

  15. Hyams JS. Biologics in pediatric Crohn’s disease: is it time to move to an earlier therapeutic approach? Expert Rev Clin Immunol. 2014;10:1423–6.

    Article  CAS  PubMed  Google Scholar 

  16. Thayu M, Leonard MB, Hyams JS, Crandall WV, et al. Improvement in biomarkers of bone formation during infliximab therapy in pediatric Crohn’s disease: results of the REACH study. Clin Gastroenterol Hepatol. 2008;6:1378–84.

    Article  CAS  PubMed  Google Scholar 

  17. Kessler EA, Becker ML. Therapeutic advancements in juvenile idiopathic arthritis. Best Pract Res Clin Rheumatol. 2014;28:293–313.

    Article  PubMed  Google Scholar 

  18. Billiau AD, Loop M, Le PQ, Berthet F, Philippet P, Kasran A, Wouters CH. Etanercept improves linear growth and bone mass acquisition in MTX-resistant polyarticular-course juvenile idiopathic arthritis. Rheumatology (Oxford). 2010;49:1550–8.

    Article  CAS  Google Scholar 

  19. Simonini G, Giani T, Stagi S, de Martino M, Falcini F. Bone status over 1 yr of etanercept treatment in juvenile idiopathic arthritis. Rheumatology (Oxford). 2005;44:777–80.

    Article  CAS  Google Scholar 

  20. Griffin LM, Thayu M, Baldassano RN, DeBoer MD, Zemel BS, Denburg MR, Denson LA, Shults J, Herskovitz R, Long J, Leonard MB. Improvements in bone density and structure during anti-TNF-alpha therapy in pediatric Crohn’s disease. J Clin Endocrinol Metab. 2015;100:2630–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Canalis E, Mazziotti G, Giustina A, Bilezikian JP. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007;18:1319–28.

    Article  CAS  PubMed  Google Scholar 

  22. King WM, Ruttencutter R, Nagaraja HN, Matkovic V, Landoll J, Hoyle C, Mendell JR, Kissel JT. Orthopedic outcomes of long-term daily corticosteroid treatment in Duchenne muscular dystrophy. Neurology. 2007;68:1607–13.

    Article  CAS  PubMed  Google Scholar 

  23. Halton J, Gaboury I, Grant R, Alos N, et al., Canadian STOPP Consortium. Advanced vertebral fracture among newly diagnosed children with acute lymphoblastic leukemia: results of the Canadian Steroid-Associated Osteoporosis in the Pediatric Population (STOPP) research program. J Bone Miner Res. 2009;24:1326–1334.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Feber J, Gaboury I, Ni A, Alos N, et al. Skeletal findings in children recently initiating glucocorticoids for the treatment of nephrotic syndrome. Osteoporos Int. 2012;23:751–60.

    Article  CAS  PubMed  Google Scholar 

  25. Huber AM, Gaboury I, Cabral DA, Lang B, et al. Prevalent vertebral fractures among children initiating glucocorticoid therapy for the treatment of rheumatic disorders. Arthritis Care Res (Hoboken). 2010;62:516–26.

    Article  CAS  Google Scholar 

  26. Alos N, Grant RM, Ramsay T, Halton J, et al. High incidence of vertebral fractures in children with acute lymphoblastic leukemia 12 months after the initiation of therapy. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30:2760–7.

    Article  CAS  Google Scholar 

  27. Phan V, Blydt-Hansen T, Feber J, Alos N, et al. Skeletal findings in the first 12 months following initiation of glucocorticoid therapy for pediatric nephrotic syndrome. Osteoporos Int. 2014;25:627–37.

    Article  CAS  PubMed  Google Scholar 

  28. Rodd C, Lang B, Ramsay T, Alos N, et al. Incident vertebral fractures among children with rheumatic disorders 12 months after glucocorticoid initiation: a national observational study. Arthritis Care Res. 2012;64:122–31.

    Article  Google Scholar 

  29. Kilpinen-Loisa P, Paasio T, Soiva M, Ritanen UM, Lautala P, Palmu P, Pihko H, Makitie O. Low bone mass in patients with motor disability: prevalence and risk factors in 59 Finnish children. Dev Med Child Neurol. 2010;52:276–82.

    Article  PubMed  Google Scholar 

  30. Bishop N, Arundel P, Clark E, Dimitri P, Farr J, Jones G, Makitie O, Munns CF, Shaw N. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 pediatric official positions. J Clin Densitom. 2014;17:275–80.

    Article  PubMed  Google Scholar 

  31. Hogler W, Wehl G, van Staa T, Meister B, Klein-Franke A, Kropshofer G. Incidence of skeletal complications during treatment of childhood acute lymphoblastic leukemia: comparison of fracture risk with the general practice research database. Pediatr Blood Cancer. 2007;48:21–7.

    Article  PubMed  Google Scholar 

  32. van Staa TP, Cooper C, Leufkens HG, Bishop N. Children and the risk of fractures caused by oral corticosteroids. J Bone Miner Res. 2003;18:913–8.

    Article  PubMed  Google Scholar 

  33. Baty JM, Vogt EC. Bone changes of leukemia in children. Am J Roentgenol. 1935;34:310–3.

    Google Scholar 

  34. Helenius I, Remes V, Salminen S, Valta H, et al. Incidence and predictors of fractures in children after solid organ transplantation: a 5-year prospective, population-based study. J Bone Miner Res. 2006;21:380–7.

    Article  PubMed  Google Scholar 

  35. Valta H, Jalanko H, Holmberg C, Helenius I, Makitie O. Impaired bone health in adolescents after liver transplantation. Am J Transplant. 2008;8:150–7.

    CAS  PubMed  Google Scholar 

  36. Valta H, Makitie O, Ronnholm K, Jalanko H. Bone health in children and adolescents after renal transplantation. J Bone Miner Res. 2009;24:1699–708.

    Article  CAS  PubMed  Google Scholar 

  37. Vautour LM, Melton LJ 3rd, Clarke BL, Achenbach SJ, Oberg AL, McCarthy JT. Long-term fracture risk following renal transplantation: a population-based study. Osteoporos Int. 2004;15:160–7.

    Article  PubMed  Google Scholar 

  38. Henderson RC, Berglund LM, May R, Zemel BS, et al. The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescents with cerebral palsy or muscular dystrophy. J Bone Miner Res. 2010;25:520–6.

    Article  PubMed  Google Scholar 

  39. Dennison E, Cooper C. Epidemiology of osteoporotic fractures. Horm Res. 2000;54(Suppl 1):58–63.

    Article  CAS  PubMed  Google Scholar 

  40. McAdam LC, Rastogi A, Macleod K, Douglas Biggar W. Fat embolism syndrome following minor trauma in Duchenne muscular dystrophy. Neuromuscul Disord. 2012;22:1035–9.

    Article  PubMed  Google Scholar 

  41. Medeiros MO, Behrend C, King W, Sanders J, Kissel J, Ciafaloni E. Fat embolism syndrome in patients with Duchenne muscular dystrophy. Neurol. 2013;80:1350–2.

    Article  Google Scholar 

  42. Gordon KE, Dooley JM, Sheppard KM, MacSween J, Esser MJ. Impact of bisphosphonates on survival for patients with Duchenne muscular dystrophy. Pediatrics. 2011;127:e353–8.

    Article  PubMed  Google Scholar 

  43. Nelson DA, Kleerekoper M, Peterson EL. Reversal of vertebral deformities in osteoporosis: measurement error or “rebound”? J Bone Miner Res. 1994;9:977–82.

    Article  CAS  PubMed  Google Scholar 

  44. Sbrocchi AM, Rauch F, Jacob P, McCormick A, McMillan HJ, Matzinger MA, Ward LM. The use of intravenous bisphosphonate therapy to treat vertebral fractures due to osteoporosis among boys with Duchenne muscular dystrophy. Osteoporos Int. 2012;23:2703–11.

    Article  CAS  PubMed  Google Scholar 

  45. Mostoufi-Moab S, Brodsky J, Isaacoff EJ, Tsampalieros A, Ginsberg JP, Zemel B, Shults J, Leonard MB. Longitudinal assessment of bone density and structure in childhood survivors of acute lymphoblastic leukemia without cranial radiation. J Clin Endocrinol Metab. 2012;97:3584–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marinovic D, Dorgeret S, Lescoeur B, Alberti C, Noel M, Czernichow P, Sebag G, Vilmer E, Leger J. Improvement in bone mineral density and body composition in survivors of childhood acute lymphoblastic leukemia: a 1-year prospective study. Pediatrics. 2005;116:e102–8.

    Article  PubMed  Google Scholar 

  47. Gurney JG, Kaste SC, Liu W, Srivastava DK, et al. Bone mineral density among long-term survivors of childhood acute lymphoblastic leukemia: results from the St. Jude Lifetime Cohort Study. Pediatr Blood Cancer. 2014;61:1270–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Makitie O, Heikkinen R, Toiviainen-Salo S, Henriksson M, Puukko-Viertomies LR, Jahnukainen K. Long-term skeletal consequences of childhood acute lymphoblastic leukemia in adult males: a cohort study. Eur J Endocrinol. 2013;168:281–8.

    Article  CAS  PubMed  Google Scholar 

  49. Burger H, Van Daele PL, Grashuis K, Hofman A, Grobbee DE, Schutte HE, Birkenhager JC, Pols HA. Vertebral deformities and functional impairment in men and women. J Bone Miner Res. 1997;12:152–7.

    Article  CAS  PubMed  Google Scholar 

  50. Nevitt MC, Ettinger B, Black DM, Stone K, Jamal SA, Ensrud K, Segal M, Genant HK, Cummings SR. The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med. 1998;128:793–800.

    Article  CAS  PubMed  Google Scholar 

  51. Kerkeni S, Kolta S, Fechtenbaum J, Roux C. Spinal deformity index (SDI) is a good predictor of incident vertebral fractures. Osteoporos Int. 2009;20:1547–52.

    Article  CAS  PubMed  Google Scholar 

  52. Kocks J, Ward K, Mughal Z, Moncayo R, Adams J, Hogler W. Z-score comparability of bone mineral density reference databases for children. J Clin Endocrinol Metab. 2010;95:4652–9.

    Article  CAS  PubMed  Google Scholar 

  53. Leonard MB, Propert KJ, Zemel BS, Stallings VA, Feldman HI. Discrepancies in pediatric bone mineral density reference data: potential for misdiagnosis of osteopenia. J Pediatr. 2010;135:182–8.

    Article  Google Scholar 

  54. Ma J, Siminoski K, Alos N, Halton J, et al. The choice of normative pediatric reference database changes spine bone mineral density Z-scores but not the relationship between bone mineral density and prevalent vertebral fractures. J Clin Endocrinol Metab. 2015;100:1018–27.

    Article  CAS  PubMed  Google Scholar 

  55. Genant HK, CY W, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 1993;8:1137–48.

    Article  CAS  PubMed  Google Scholar 

  56. Grigoryan M, Guermazi A, Roemer FW, Delmas PD, Genant HK. Recognizing and reporting osteoporotic vertebral fractures. Eur Spine J. 2003;12(Suppl 2):S104–12.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Eastell R, Cedel SL, Wahner HW, Riggs BL, Melton LJ 3rd. Classification of vertebral fractures. J Bone Miner Res. 1991;6:207–15.

    Article  CAS  PubMed  Google Scholar 

  58. Palomo T, Fassier F, Ouellet J, Sato A, Montpetit K, Glorieux FH, Rauch F. Intravenous bisphosphonate therapy of young children with osteogenesis imperfecta: skeletal findings during follow up throughout the growing years. J Bone Miner Res. 2015;30(12):2150–7.

    Article  CAS  PubMed  Google Scholar 

  59. Genant HK, Jergas M, Palermo L, Nevitt M, Valentin RS, Black D, Cummings SR. Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis The Study of Osteoporotic Fractures Research Group. J Bone Miner Res. 1996;11:984–96.

    Article  CAS  PubMed  Google Scholar 

  60. Siminoski K, Lentle B, Matzinger MA, Shenouda N, Ward LM. Observer agreement in pediatric semiquantitative vertebral fracture diagnosis. Pediatr Radiol. 2014;44:457–66.

    Article  PubMed  Google Scholar 

  61. Adachi JD, Olszynski WP, Hanley DA, Hodsman AB, et al. Management of corticosteroid-induced osteoporosis. Semin Arthritis Rheum. 2000;29:228–51.

    Article  CAS  PubMed  Google Scholar 

  62. Vallarta-Ast N, Krueger D, Wrase C, Agrawal S, Binkley N. An evaluation of densitometric vertebral fracture assessment in men. Osteoporos Int. 2007;18:1405–10.

    Article  CAS  PubMed  Google Scholar 

  63. Spiegel LR, Schneider R, Lang BA, Birdi N, Silverman ED, Laxer RM, Stephens D, Feldman BM. Early predictors of poor functional outcome in systemic-onset juvenile rheumatoid arthritis: a multicenter cohort study. Arthritis Rheum. 2000;43:2402–9.

    Article  CAS  PubMed  Google Scholar 

  64. Siminoski K, Lee KC, Jen H, Warshawski R, et al. Anatomical distribution of vertebral fractures: comparison of pediatric and adult spines. Osteoporos Int. 2012;23:1999–2008.

    Article  CAS  PubMed  Google Scholar 

  65. Buehring B, Krueger D, Checovich M, Gemar D, Vallarta-Ast N, Genant HK, Binkley N. Vertebral fracture assessment: impact of instrument and reader. Osteoporos Int. 2010;21:487–94.

    Article  CAS  PubMed  Google Scholar 

  66. Mayranpaa MK, Helenius I, Valta H, Mayranpaa MI, Toiviainen-Salo S, Makitie O. Bone densitometry in the diagnosis of vertebral fractures in children: accuracy of vertebral fracture assessment. Bone. 2007;41:353–9.

    Article  PubMed  Google Scholar 

  67. Glorieux FH, Travers R, Taylor A, Bowen JR, Rauch F, Norman M, Parfitt AM. Normative data for iliac bone histomorphometry in growing children. Bone. 2000;26:103–9.

    Article  CAS  PubMed  Google Scholar 

  68. Bacchetta J, Wesseling-Perry K, Gilsanz V, Gales B, Pereira RC, Salusky IB. Idiopathic juvenile osteoporosis: a cross-sectional single-centre experience with bone histomorphometry and quantitative computed tomography. Pediatr Rheumatol Online J. 2013;11:6.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rauch F. Bone biopsy: indications and methods. Endocr Dev. 2009;16:49–57.

    Article  PubMed  Google Scholar 

  70. Crabtree NJ, Arabi A, Bachrach LK, Fewtrell M, El-Hajj Fuleihan G, Kecskemethy HH, Jaworski M, Gordon CM. Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD pediatric official positions. J Clin Densitom. 2014;17:225–42.

    Article  PubMed  Google Scholar 

  71. Zemel BS, Stallings VA, Leonard MB, Paulhamus DR, Kecskemethy HH, Harcke HT, Henderson RC. Revised pediatric reference data for the lateral distal femur measured by Hologic discovery/Delphi dual-energy X-ray absorptiometry. J Clin Densitom. 2009;12:207–18.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Greulich WW, Pyle SI. Radiographic atlas of skeletal development of the hand and wrist. 2nd ed. Stanford: Stanford University Press; 1959.

    Google Scholar 

  73. Kroger H, Kotaniemi A, Vainio P, Alhava E. Bone densitometry of the spine and femur in children by dual-energy x-ray absorptiometry. Bone Miner. 1992;17:75–85.

    Article  CAS  PubMed  Google Scholar 

  74. Zemel BS, Kalkwarf HJ, Gilsanz V, Lappe JM, et al. Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab. 2011;96:3160–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Crabtree NJ, Hogler W, Cooper MS, Shaw NJ. Diagnostic evaluation of bone densitometric size adjustment techniques in children with and without low trauma fractures. Osteoporos Int. 2013;24:2015–24.

    Article  CAS  PubMed  Google Scholar 

  76. Binkley T, Johnson J, Vogel L, Kecskemethy H, Henderson R, Specker B. Bone measurements by peripheral quantitative computed tomography (pQCT) in children with cerebral palsy. J Pediatr. 2005;147:791–6.

    Article  PubMed  Google Scholar 

  77. Hogler W, Shaw N. Childhood growth hormone deficiency, bone density, structures and fractures: scrutinizing the evidence. Clin Endocrinol (Oxf). 2010;72:281–9.

    Article  CAS  Google Scholar 

  78. Vasikaran S, Cooper C, Eastell R, Griesmacher A, Morris HA, Trenti T, Kanis JA. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med. 2011;49:1271–4.

    Article  CAS  PubMed  Google Scholar 

  79. Rauchenzauner M, Schmid A, Heinz-Erian P, Kapelari K, Falkensammer G, Griesmacher A, Finkenstedt G, Hogler W. Sex- and age-specific reference curves for serum markers of bone turnover in healthy children from 2 months to 18 years. J Clin Endocrinol Metab. 2007;92:443–9.

    Article  CAS  PubMed  Google Scholar 

  80. Bayer M. Reference values of osteocalcin and procollagen type I N-propeptide plasma levels in a healthy Central European population aged 0-18 years. Osteoporos Int. 2014;25:729–36.

    Article  CAS  PubMed  Google Scholar 

  81. Morovat A, Catchpole A, Meurisse A, Carlisi A, Bekaert AC, Rousselle O, Paddon M, James T, Cavalier E. IDS iSYS automated intact procollagen-1-N-terminus pro-peptide assay: method evaluation and reference intervals in adults and children. Clin Chem Lab Med. 2013;51:2009–18.

    Article  CAS  PubMed  Google Scholar 

  82. Huang Y, Eapen E, Steele S, Grey V. Establishment of reference intervals for bone markers in children and adolescents. Clin Biochem. 2011;44:771–8.

    Article  CAS  PubMed  Google Scholar 

  83. Rauch F, Plotkin H, Travers R, Zeitlin L, Glorieux FH. Osteogenesis imperfecta types I, III, and IV: effect of pamidronate therapy on bone and mineral metabolism. J Clin Endocrinol Metab. 2003;88:986–92.

    Article  CAS  PubMed  Google Scholar 

  84. Rauch F, Travers R, Plotkin H, Glorieux FH. The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J Clin Invest. 2002;110:1293–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ward LM, Rauch F, Matzinger MA, Benchimol EI, Boland M, Mack DR. Iliac bone histomorphometry in children with newly diagnosed inflammatory bowel disease. Osteoporos Int. 2010;21:331–7.

    Article  CAS  PubMed  Google Scholar 

  86. Hartikka H, Makitie O, Mannikko M, Doria AS, Daneman A, Cole WG, Ala-Kokko L, Sochett EB. Heterozygous mutations in the LDL receptor-related protein 5 (LRP5) gene are associated with primary osteoporosis in children. J Bone Miner Res. 2005;20:783–9.

    Article  CAS  PubMed  Google Scholar 

  87. Fahiminiya S, Majewski J, Roughley P, Roschger P, Klaushofer K, Rauch F. Whole-exome sequencing reveals a heterozygous LRP5 mutation in a 6-year-old boy with vertebral compression fractures and low trabecular bone density. Bone. 2013;57:41–6.

    Article  CAS  PubMed  Google Scholar 

  88. Whyte MP, Greenberg CR, Salman NJ, Bober MB, et al. Enzyme-replacement therapy in life-threatening hypophosphatasia. NEJM. 2012;366:904–13.

    Article  CAS  PubMed  Google Scholar 

  89. Faje AT, Fazeli PK, Miller KK, Katzman DK, Ebrahimi S, Lee H, Mendes N, Snelgrove D, Meenaghan E, Misra M, Klibanski A. Fracture risk and areal bone mineral density in adolescent females with anorexia nervosa. Int J Eat Disord. 2014;47:458–66.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Marini JC, Blissett AR. New genes in bone development: what’s new in osteogenesis imperfecta. J Clin Endocrinol Metab. 2013;98:3095–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sillence DO, Rimoin DL. Classification of osteogenesis imperfect. Lancet. 1978;1:1041–2.

    Article  CAS  PubMed  Google Scholar 

  92. Palomo T, Al-Jallad H, Moffatt P, Glorieux FH, Lentle B, Roschger P, Klaushofer K, Rauch F. Skeletal characteristics associated with homozygous and heterozygous WNT1 mutations. Bone. 2014;67:63–70.

    Article  CAS  PubMed  Google Scholar 

  93. Mitchell PJ, Cooper C, Dawson-Hughes B, Gordon CM, Rizzoli R. Life-course approach to nutrition. Osteoporos Int. 2005;26:2723–42.

    Article  CAS  Google Scholar 

  94. Specker B, Thiex NW, Sudhagoni RG. Does exercise influence Pediatric bone? A systematic review. Clin Orthop Relat Res. 2015;473:3658–72.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Golden NH, Abrams SA. Optimizing bone health in children and adolescents. Pediatrics. 2014;134:e1229–43.

    Article  PubMed  Google Scholar 

  96. Abrams SA, Coss-Bu JA, Tiosano D, Vitamin D. Effects on childhood health and disease. Nat Rev Endocrinol. 2013;9:162–70.

    Article  CAS  PubMed  Google Scholar 

  97. Julian-Almarcegui C, Gomez-Cabello A, Huybrechts I, Gonzalez-Aguero A, Kaufman JM, Casajus JA, Vicente-Rodriguez G. Combined effects of interaction between physical activity and nutrition on bone health in children and adolescents: a systematic review. Nutr Rev. 2015;73:127–39.

    Article  CAS  PubMed  Google Scholar 

  98. Handel MN, Heitmann BL, Abrahamsen B. Nutrient and food intakes in early life and risk of childhood fractures: a systematic review and meta-analysis. Am J Clin Nutr. 2015;102:1182–95.

    Article  CAS  PubMed  Google Scholar 

  99. Tan VP, Macdonald HM, Kim S, Nettlefold L, Gabel L, Ashe MC, McKay HA. Influence of physical activity on bone strength in children and adolescents: a systematic review and narrative synthesis. J Bone Miner Res. 2014;29:2161–81.

    Article  PubMed  Google Scholar 

  100. Institute of Medicine. Dietary reference intakes for calcium and vitamin D. Washington, DC: The National Academies Press; 2011.

    Google Scholar 

  101. Misra M, Pacaud D, Petryk A, Collett-Solberg PF, Kappy M, Vitamin D. Deficiency in children and its management: review of current knowledge and recommendations. Pediatrics. 2008;122:398–417.

    Article  PubMed  Google Scholar 

  102. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1911–30.

    Article  CAS  PubMed  Google Scholar 

  103. Winzenberg T, Powell S, Shaw KA, Jones G. Effects of vitamin D supplementation on bone density in healthy children: systematic review and meta-analysis. BMJ. 2011;342:c7254.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Edouard T, Glorieux FH, Rauch F. Predictors and correlates of vitamin D status in children and adolescents with osteogenesis imperfecta. J Clin Endocrinol Metab. 2011;96:31930–8.

    Google Scholar 

  105. Benchimol EI, Ward LM, Gallagher JC, Rauch F, Barrowman N, Warren J, Beedle S, Mack DR. Effect of calcium and vitamin D supplementation on bone mineral density in children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2007;45:538–45.

    Article  CAS  PubMed  Google Scholar 

  106. Kaste SC, Qi A, Smith K, Surprise H, et al. Calcium and cholecalciferol supplementation provides no added benefit to nutritional counseling to improve bone mineral density in survivors of childhood acute lymphoblastic leukemia (ALL). Pediatr Blood Cancer. 2014;61:885–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Theodoratou E, Tzoulaki I, Zgaga L, Ioannidis JP. Vitamin D and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ. 2014;348:g2035.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Mandel K, Atkinson S, Barr RD, Pencharz P. Skeletal morbidity in childhood acute lymphoblastic leukemia. J Clin Oncol. 2004;22:1215–21.

    Article  PubMed  Google Scholar 

  109. Kalayci AG, Kansu A, Girgin N, Kucuk O, Aras G. Bone mineral density and importance of a gluten-free diet in patients with celiac disease in childhood. Pediatrics. 2001;108:E89.

    Article  CAS  PubMed  Google Scholar 

  110. Avgeri M, Papadopoulou A, Platokouki H, Douros K, Rammos S, Nicolaidou P, Aronis S. Assessment of bone mineral density and markers of bone turnover in children under long-term oral anticoagulant therapy. J Pediatr Hematol Oncol. 2008;30:592–7.

    Article  PubMed  Google Scholar 

  111. Modesto W, Bahamondes MV, Bahamondes L. Prevalence of low bone mass and osteoporosis in long-term users of the injectable contraceptive depot medroxyprogesterone acetate. J Womens Health (Larchmt). 2015;24:636–40.

    Article  Google Scholar 

  112. Molitch ME, Clemmons DR, Malozowski S, Merriam GR, Vance ML. Evaluation and treatment of adult growth hormone deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1587–609.

    Article  CAS  PubMed  Google Scholar 

  113. Bodor M, McDonald CM. Why short stature is beneficial in Duchenne muscular dystrophy. Muscle Nerve. 2013;48:336–42.

    Article  PubMed  Google Scholar 

  114. Dubner SE, Shults J, Baldassano RN, Zemel BS, Thayu M, Burnham JM, Herskovitz RM, Howard KM, Leonard MB. Longitudinal assessment of bone density and structure in an incident cohort of children with Crohn’s disease. Gastroenterology. 2009;136:123–30.

    Article  PubMed  Google Scholar 

  115. Dwan K, Phillipi CA, Steiner RD, Basel D. Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database Syst Rev. 2014;(7):CD005088.

    Google Scholar 

  116. Ward L, Tricco AC, Phuong P, Cranney A, Barrowman N, Gaboury I, Rauch F, Tugwell P, Moher D. Bisphosphonate therapy for children and adolescents with secondary osteoporosis. Cochrane Database Syst Rev. 2007;(4):CD005324.

    Google Scholar 

  117. Ward LM, Rauch F. Oral bisphosphonates for paediatric osteogenesis imperfecta? Lancet. 2013;282:1388–9.

    Article  CAS  Google Scholar 

  118. Glorieux FH, Bishop NJ, Plotkin H, Chabot G, Lanoue G, Travers R. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. NEJM. 1998;339:947–52.

    Article  CAS  PubMed  Google Scholar 

  119. Barros ER, Saraiva GL, de Oliveira TP, Lazaretti-Castro M. Safety and efficacy of a 1-year treatment with zoledronic acid compared with pamidronate in children with osteogenesis imperfecta. J Pediatr Endocrinol Metab. 2012;25:485–91.

    Article  CAS  PubMed  Google Scholar 

  120. Grey A, Bolland M, Wattie D, Horne A, Gamble G, Reid IR. Prolonged antiresorptive activity of zoledronate: a randomized, controlled trial. J Bone Miner Res. 2010;25:2251–5.

    Article  CAS  PubMed  Google Scholar 

  121. Ward LM, Denker AE, Porras A, Shugarts S, Kline W, Travers R, Mao C, Rauch F, Maes A, Larson P, Deutsch P, Glorieux FH. Single-dose pharmacokinetics and tolerability of alendronate 35- and 70-milligram tablets in children and adolescents with osteogenesis imperfecta type I. J Clin Endocrinol Metab. 2005;90:4051–6.

    Article  CAS  PubMed  Google Scholar 

  122. Golden NH, Iglesias EA, Jacobson MS, Carey D, Meyer W, Schebendach J, Hertz S, Shenker IR. Alendronate for the treatment of osteopenia in anorexia nervosa: a randomized, double-blind, placebo-controlled trial. J Clin Endocrinol Metab. 2005;90:3179–85.

    Article  CAS  PubMed  Google Scholar 

  123. Bishop N, Adami S, Ahmed SF, Anton J, et al. Risedronate in children with osteogenesis imperfecta: a randomised, double-blind, placebo-controlled trial. Lancet. 2013;382:1424–32.

    Article  CAS  PubMed  Google Scholar 

  124. Rauch F, Munns CF, Land C, Cheung M, Glorieux FH. Risedronate in the treatment of mild pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J Bone Miner Res Off J Am Soc Bone Miner Res. 2009;24:1282–9.

    Article  CAS  Google Scholar 

  125. Bianchi ML, Colombo C, Assael BM, Dubini A, et al. Treatment of low bone density in young people with cystic fibrosis: a multicentre, prospective, open-label observational study of calcium and calcifediol followed by a randomised placebo-controlled trial of alendronate. Lancet Respir Med. 2013;1:377–85.

    Article  CAS  PubMed  Google Scholar 

  126. Rudge S, Hailwood S, Horne A, Lucas J, Wu F, Cundy T. Effects of once-weekly oral alendronate on bone in children on glucocorticoid treatment. Rheumatol (Oxford). 2005;44:813–8.

    Article  CAS  Google Scholar 

  127. Gatti D, Antoniazzi F, Prizzi R, Braga V, Rossini M, Tato L, Viapiana O, Adami S. Intravenous neridronate in children with osteogenesis imperfecta: a randomized controlled study. J Bone Miner Res. 2005;20:758–63.

    Article  CAS  PubMed  Google Scholar 

  128. Sakkers R, Kok D, Engelbert R, van Dongen A, Jansen M, Pruijs H, Verbout A, Schweitzer D, Uiterwaal C. Skeletal effects and functional outcome with olpadronate in children with osteogenesis imperfecta: a 2-year randomised placebo-controlled study. Lancet. 2004;363:1427–31.

    Article  CAS  PubMed  Google Scholar 

  129. Ward LM, Rauch F, Whyte MP, D’Astous J, et al. Alendronate for the treatment of pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J Clin Endocrinol Metab. 2011;96:355–64.

    Article  CAS  PubMed  Google Scholar 

  130. Munns CF, Rauch F, Travers R, Glorieux FH. Effects of intravenous pamidronate treatment in infants with osteogenesis imperfecta: clinical and histomorphometric outcome. J Bone Miner Res. 2005;20:1235–43.

    Article  CAS  PubMed  Google Scholar 

  131. Land C, Rauch F, Munns CF, Sahebjam S, Glorieux FH. Vertebral morphometry in children and adolescents with osteogenesis imperfecta: effect of intravenous pamidronate treatment. Bone. 2006;39:901–6.

    Article  CAS  PubMed  Google Scholar 

  132. Antoniazzi F, Zamboni G, Lauriola S, Donadi L, Adami S, Tato L. Early bisphosphonate treatment in infants with severe osteogenesis imperfecta. J Pediatr. 2006;149:174–9.

    Article  CAS  PubMed  Google Scholar 

  133. Astrom E, Jorulf H, Soderhall S. Intravenous pamidronate treatment of infants with severe osteogenesis imperfecta. Arch Dis Child. 2007;92:332–8.

    Article  PubMed  Google Scholar 

  134. Ward LM, Glorieux FH, Rauch F, Verbruggen N, Heyden N, Lombardi AA. Randomized, placebo-controlled trial of oral alendronate in children and adolescents with osteogenesis imperfecta. Bone. 2005;36:0–18.

    Google Scholar 

  135. Rauch F, Munns C, Land C, Glorieux FH. Pamidronate in children and adolescents with osteogenesis imperfecta: effect of treatment discontinuation. J Clin Endocrinol Metab. 2006;91:1268–74.

    Article  CAS  PubMed  Google Scholar 

  136. Land C, Rauch F, Montpetit K, Ruck-Gibis J, Glorieux FH. Effect of intravenous pamidronate therapy on functional abilities and level of ambulation in children with osteogenesis imperfecta. J Pediatr. 2006;148:456–60.

    Article  CAS  PubMed  Google Scholar 

  137. Zeitlin L, Rauch F, Plotkin H, Glorieux FH. Height and weight development during four years of therapy with cyclical intravenous pamidronate in children and adolescents with osteogenesis imperfecta types I, III, and IV. Pediatrics. 2003;111:1030–6.

    Article  PubMed  Google Scholar 

  138. Vuorimies I, Toiviainen-Salo S, Hero M, Makitie O. Zoledronic acid treatment in children with osteogenesis imperfecta. Horm Res Paediatr. 2011;75:346–53.

    Article  CAS  PubMed  Google Scholar 

  139. Ooi HL, Briody J, Biggin A, Cowell CT, Munns CF. Intravenous zoledronic acid given every 6 months in childhood osteoporosis. Horm Res Paediatr. 2013;80:179–84.

    Article  CAS  PubMed  Google Scholar 

  140. Gandrud LM, Cheung JC, Daniels MW, Bachrach LK. Low-dose intravenous pamidronate reduces fractures in childhood osteoporosis. J Pediatr Endocrinol Metab. 2003;16:887–92.

    Article  CAS  PubMed  Google Scholar 

  141. Steelman J, Zeitler P. Treatment of symptomatic pediatric osteoporosis with cyclic single-day intravenous pamidronate infusions. J Pediatr. 2003;142:417–23.

    Article  CAS  PubMed  Google Scholar 

  142. Whyte MP, Wenkert D, Clements KL, McAlister WH, Mumm S. Bisphosphonate-induced osteopetrosis. NEJM. 2003;349:457–63.

    Article  CAS  PubMed  Google Scholar 

  143. Rauch F, Cornibert S, Cheung M, Glorieux FH. Long-bone changes after pamidronate discontinuation in children and adolescents with osteogenesis imperfecta. Bone. 2007;40:821–7.

    Article  CAS  PubMed  Google Scholar 

  144. Biggin A, Briody JN, Ormshaw E, Wong KK, Bennetts BH, Munns CF. Fracture during intravenous bisphosphonate treatment in a child with osteogenesis imperfecta: an argument for a more frequent, low-dose treatment regimen. Horm Res Paediatr. 2014;81:204–10.

    Article  CAS  PubMed  Google Scholar 

  145. Biggin A, Zheng L, Briody JN, Coorey CP, Munns CF. The long-term effects of switching from active intravenous bisphosphonate treatment to low-dose maintenance therapy in children with osteogenesis imperfecta. Horm Res Paediatr. 2015;83:183–9.

    Article  CAS  PubMed  Google Scholar 

  146. Brown JP, Morin S, Leslie W, Papaioannou A, et al. Bisphosphonates for treatment of osteoporosis: expected benefits, potential harms, and drug holidays. Can Fam Physician. 2014;60:324–33.

    PubMed  PubMed Central  Google Scholar 

  147. Unal E, Abaci A, Bober E, Buyukgebiz A. Efficacy and safety of oral alendronate treatment in children and adolescents with osteoporosis. J Pediatr Endocrinol Metab. 2006;19:523–80.

    CAS  PubMed  Google Scholar 

  148. Khosla S, Burr D, Cauley J, Dempster DW, et al. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2007;22:1479–91.

    Article  PubMed  Google Scholar 

  149. Malmgren B, Astrom E, Soderhall S. No osteonecrosis in jaws of young patients with osteogenesis imperfecta treated with bisphosphonates. J Oral Pathol Med. 2008;37:196–200.

    Article  CAS  PubMed  Google Scholar 

  150. Chahine C, Cheung MS, Head TW, Schwartz S, Glorieux FH, Rauch F. Tooth extraction socket healing in pediatric patients treated with intravenous pamidronate. J Pediatr. 2008;153:719–20.

    Article  CAS  PubMed  Google Scholar 

  151. Brown JJ, Ramalingam L, Zacharin MR. Bisphosphonate-associated osteonecrosis of the jaw: does it occur in children? Clin Endocrinol. 2008;68:863–7.

    Article  CAS  Google Scholar 

  152. Bhatt RN, Hibbert SA, Munns CF. The use of bisphosphonates in children: review of the literature and guidelines for dental management. Aust Dent J. 2014;59:9–19.

    Article  CAS  PubMed  Google Scholar 

  153. Shane E, Burr D, Abrahamsen B, Adler RA, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2014;29:1–23.

    Article  PubMed  Google Scholar 

  154. Hegazy A, Kenawey M, Sochett E, Tile L, Cheung AM, Howard AW. Unusual femur stress fractures in children with osteogenesis imperfecta and intramedullary rods on long-term intravenous pamidronate therapy. J Pediatr Orthop. 2016;36(7):757–61.

    Article  PubMed  Google Scholar 

  155. Munns CF, Rauch F, Zeitlin L, Fassier F, Glorieux FH. Delayed osteotomy but not fracture healing in pediatric osteogenesis imperfecta patients receiving pamidronate. J Bone Miner Res. 2004;19:1779–86.

    Article  CAS  PubMed  Google Scholar 

  156. Anam EA, Rauch F, Glorieux FH, Fassier F, Hamdy R. Osteotomy healing in children with osteogenesis imperfecta receiving bisphosphonate treatment. J Bone Miner Res. 2015;30:1362–8.

    Article  CAS  PubMed  Google Scholar 

  157. Papapoulos SE, Cremers SC. Prolonged bisphosphonate release after treatment in children. NEJM. 2007;356:1075–6.

    Article  CAS  PubMed  Google Scholar 

  158. Djokanovic N, Klieger-Grossmann C, Koren G. Does treatment with bisphosphonates endanger the human pregnancy? J Obstet Gynaecol Can. 2008;30:1146–8.

    Article  PubMed  Google Scholar 

  159. Green SB, Pappas AL. Effects of maternal bisphosphonate use on fetal and neonatal outcomes. Am J Health Syst Pharm. 2014;71:2029–36.

    Article  CAS  PubMed  Google Scholar 

  160. Levy S, Fayez I, Taguchi N, Han JY, Aiello J, Matsui D, Moretti M, Koren G, Ito S. Pregnancy outcome following in utero exposure to bisphosphonates. Bone. 2009;44:428–30.

    Article  CAS  PubMed  Google Scholar 

  161. Munns CF, Rauch F, Ward L, Glorieux FH. Maternal and fetal outcome after long-term pamidronate treatment before conception: a report of two cases. J Bone Miner Res. 2004;19:1742–5.

    Article  PubMed  Google Scholar 

  162. Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest. 2003;111:1221–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kostenuik PJ, Nguyen HQ, McCabe J, Warmington KS, et al. Denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and increases BMD in knock-in mice that express chimeric (murine/human) RANKL. J Bone Miner Res. 2009;24:182–95.

    Article  CAS  PubMed  Google Scholar 

  164. Hofbauer LC, Zeitz U, Schoppet M, Skalicky M, Schuler C, Stolina M, Kostenuik PJ, Erben RG. Prevention of glucocorticoid-induced bone loss in mice by inhibition of RANKL. Arthritis Rheum. 2009;60:1427–37.

    Article  PubMed  Google Scholar 

  165. Dempster DW, Lambing CL, Kostenuik PJ, Grauer A. Role of RANK ligand and denosumab, a targeted RANK ligand inhibitor, in bone health and osteoporosis: a review of preclinical and clinical data. Clinical Ther. 2012;34:521–36.

    Article  CAS  Google Scholar 

  166. Semler O, Netzer C, Hoyer-Kuhn H, Becker J, Eysel P, Schoenau E. First use of the RANKL antibody denosumab in osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact. 2012;12:183–8.

    CAS  PubMed  Google Scholar 

  167. Karras NA, Polgreen LE, Ogilvie C, Manivel JC, Skubitz KM, Lipsitz E. Denosumab treatment of metastatic giant-cell tumor of bone in a 10-year-old girl. J Clin Oncol. 2013;31:e200–2.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Lange T, Stehling C, Frohlich B, Klingenhofer M, et al. Denosumab: a potential new and innovative treatment option for aneurysmal bone cysts. Eur Spine J. 2013;22:1417–22.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Boyce AM, Chong WH, Yao J, Gafni RI, et al. Denosumab treatment for fibrous dysplasia. J Bone Miner Res. 2012;27:1462–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wang HD, Boyce AM, Tsai JY, Gafni RI, Farley FA, Kasa-Vubu JZ, Molinolo AA, Collins MT. Effects of denosumab treatment and discontinuation on human growth plates. J Clin Endocrinol Metab. 2014;99:891–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Padhi D, Allison M, Kivitz AJ, Gutierrez MJ, Stouch B, Wang C, Jang G. Multiple doses of sclerostin antibody romosozumab in healthy men and postmenopausal women with low bone mass: a randomized, double-blind, placebo-controlled study. J Clin Pharmacol. 2014;54:168–78.

    Article  CAS  PubMed  Google Scholar 

  172. Padhi D, Jang G, Stouch B, Fang L, Posvar E. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res. 2011;26:19–26.

    Article  CAS  PubMed  Google Scholar 

  173. Feurer E, Chapurlat R. Emerging drugs for osteoporosis. Expert Opin Emerg Drugs. 2014;19:385–95.

    Article  CAS  PubMed  Google Scholar 

  174. Mullard A. Merck & Co. drops osteoporosis drug odanacatib. Nat Rev Drug Discov. 2016;15:669.

    PubMed  Google Scholar 

  175. Weintraub JA, Breland CE. Challenges, benefits, and factors to enhance recruitment and inclusion of children in pediatric dental research. Int J Paediatr Dent. 2015;25:310–6.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Makitie O, Doria AS, Henriques F, Cole WG, Compeyrot S, Silverman E, Laxer R, Daneman A, Sochett EB. Radiographic vertebral morphology: a diagnostic tool in pediatric osteoporosis. J Pediatr. 2005;146:395–401.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the following programs and organizations: 1. LMW: the Canadian Institutions for Health Research Operating Grants Program, the Canadian Institutes for Health Research New Investigator Program, the Canadian Child Health Clinician Scientist Program, the Children’s Hospital of Eastern Ontario (CHEO) Research Institute, the University of Ottawa Research Chair Program, and the CHEO Departments of Pediatrics and Surgery; JM: The CHEO Research Institute.

Conflict of Interest

LMW has been a consultant to Novartis, Amgen, and Alexion Pharmaceuticals and has participated in clinical trials sponsored by Novartis and Amgen. JM has no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leanne M. Ward MD, FAAP, FRCPC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ward, L.M., Ma, J. (2018). Osteoporosis: Diagnosis and Management. In: Radovick, S., Misra, M. (eds) Pediatric Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-73782-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73782-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73781-2

  • Online ISBN: 978-3-319-73782-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics