Skip to main content

Biomaterial-Mediated Drug Delivery in Primary and Metastatic Cancers of the Bone

  • Chapter
  • First Online:
Orthopedic Biomaterials

Abstract

Cancer can either originate in the bone itself or it is also a major site for metastasis from solid tumors, which frequently have their origins in the breast, prostate or lung. The development of cancer in the bone environment can co-opt many of the normal physiological processes to ensure colonisation and growth in the bone tissue environment. This gives rise to a number of skeletal related events (e.g. pain and fracture) and considerable patient morbidity. Treatment is extremely challenging due to the bone physiology and the heterogeneous and dynamic nature of many tumors. Multidisciplinary management involving chemotherapy, surgery and radiation has enhanced patient’s life expectancy and quality of life. However, outcomes have not improved in recent decades and the prognosis is especially poor in cases of recurrent or metastatic disease. This underscores the critical need to identify novel therapies or indeed to enhance the delivery of existing and emerging drug treatments. In this chapter we review physiological and mechanistic considerations in the development of novel drug delivery approaches with particular emphasis on concepts in bioengineering and biomaterials science. We explore the diversity of technologies and targeting approaches that have been investigated to enhance the delivery of a range of complex cargoes, in the treatment of primary cancers and metastatic bone disease, with a view to summarising the benefits, limitations and current state of progress of biomaterial strategies to improve patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biermann JS, et al. Bone Cancer. J Natl Compr Cancer Netw. 2013;11(6):688–723.

    Article  Google Scholar 

  2. Lindsey BA, Markel JE, Kleinerman ES. Osteosarcoma overview. Rheumatol Ther. 2017;4(1):25–43.

    Article  PubMed  Google Scholar 

  3. Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev. 2001;27(3):165–76.

    Article  CAS  PubMed  Google Scholar 

  4. Hauben EI, Hogendoorn PCW. Chapter 1—Epidemiology of primary bone tumors and economical aspects of bone metastases. In: Heymann D, editor. Bone cancer. 2nd ed. San Diego: Academic; 2015. p. 5–10.

    Chapter  Google Scholar 

  5. Sekita A, Matsugaki A, Nakano T. Disruption of collagen/apatite alignment impairs bone mechanical function in osteoblastic metastasis induced by prostate cancer. Bone. 2017;97:83–93.

    Article  CAS  PubMed  Google Scholar 

  6. Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction. Nat Rev Cancer. 2011;11(6):411–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schroeder A, et al. Treating metastatic cancer with nanotechnology. Nat Rev Cancer. 2012;12(1):39–50.

    Article  CAS  Google Scholar 

  8. Whelan J, et al. Incidence and survival of malignant bone sarcomas in England 1979–2007. Int J Cancer. 2012;131(4):E508–17.

    Article  CAS  PubMed  Google Scholar 

  9. Macedo F, et al. Bone metastases: an overview. Oncol Rev. 2017;11(1):321.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Selvaggi G, Scagliotti GV. Management of bone metastases in cancer: a review. Crit Rev Oncol Hematol. 2005;56(3):365–78.

    Article  PubMed  Google Scholar 

  11. Harries M, et al. Incidence of bone metastases and survival after a diagnosis of bone metastases in breast cancer patients. Cancer Epidemiol. 2014;38(4):427–34.

    Article  CAS  PubMed  Google Scholar 

  12. Chambers AF, Groom AC, MacDonald IC. Metastasis: dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2(8):563–72.

    Article  CAS  PubMed  Google Scholar 

  13. Coleman R, et al. Bone health in cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol. 2014;25(suppl_3):iii124–37.

    Article  PubMed  Google Scholar 

  14. Coleman R. Bone metastases—current status of bone-targeted treatments. In: Heymann D, editor. Bone cancer : primary bone cancers and bone metastases. San Diego: Academic; 2015.

    Google Scholar 

  15. Clément-Demange L, Clézardin P. Emerging therapies in bone metastasis. Curr Opin Pharmacol. 2015;22:79–86.

    Article  PubMed  CAS  Google Scholar 

  16. Guise TA. Breast cancer bone metastases: it’s all about the neighborhood. Cell. 2013;154(5):957–9.

    Article  CAS  PubMed  Google Scholar 

  17. Alemany-Ribes M, Semino CE. Bioengineering 3D environments for cancer models. Adv Drug Deliv Rev. 2014;79(Supplement C):40–9.

    Article  PubMed  CAS  Google Scholar 

  18. Lamhamedi-Cherradi S-E, et al. 3D tissue-engineered model of Ewing’s sarcoma. Adv Drug Deliv Rev. 2014;79–80:155–71.

    Article  PubMed  CAS  Google Scholar 

  19. Fitzgerald KA, et al. Nanoparticle-mediated siRNA delivery assessed in a 3D co-culture model simulating prostate cancer bone metastasis. Int J Pharm. 2016;511(2):1058–69.

    Article  CAS  PubMed  Google Scholar 

  20. Marques C, et al. Multifunctional materials for bone cancer treatment. Int J Nanomed. 2014;9:2713–25.

    Google Scholar 

  21. Evola FR, et al. Biomarkers of osteosarcoma, chondrosarcoma, and Ewing sarcoma. Front Pharmacol. 2017;8:150.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Longhi A, et al. Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat Rev. 2006;32(6):423–36.

    Article  PubMed  Google Scholar 

  23. Lamplot JD, et al. The current and future therapies for human osteosarcoma. Curr Cancer Ther Rev. 2013;9(1):55–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program. Cancer. 2009;115(7):1531–43.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. In: Jaffe N, Bruland OS, Bielack S, editors. Pediatric and adolescent osteosarcoma. Boston, MA: Springer US; 2010. p. 3–13.

    Google Scholar 

  26. Guijarro MV, Ghivizzani SC, Gibbs CP. Animal models in osteosarcoma. Front Oncol. 2014;4:189.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Arndt CAS, Crist WM. Common musculoskeletal tumors of childhood and adolescence. N Engl J Med. 1999;341(5):342–52.

    Article  CAS  PubMed  Google Scholar 

  28. Luetke A, et al. Osteosarcoma treatment—where do we stand? A state of the art review. Cancer Treat Rev. 2014;40(4):523–32.

    Article  PubMed  Google Scholar 

  29. Kager L, et al. Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2003;21(10):2011–8.

    Article  PubMed  Google Scholar 

  30. Mialou V, et al. Metastatic osteosarcoma at diagnosis. Cancer. 2005;104(5):1100–9.

    Article  PubMed  Google Scholar 

  31. Durfee RA, Mohammed M, Luu HH. Review of osteosarcoma and current management. Rheumatol Ther. 2016;3(2):221–43.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kansara M, et al. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14(11):722–35.

    Article  CAS  PubMed  Google Scholar 

  33. Cesare AJ, Reddel RR. Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet. 2010;11(5):319–30.

    Article  CAS  PubMed  Google Scholar 

  34. Poos K, et al. Structuring osteosarcoma knowledge: an osteosarcoma-gene association database based on literature mining and manual annotation. Database (Oxford). 2014;2014.

    Google Scholar 

  35. Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2014;25(suppl_3):iii113–iii123.

    Google Scholar 

  36. Heymann D, Redini F. Bone sarcomas: pathogenesis and new therapeutic approaches. IBMS BoneKey. 2011;8(9):402–14.

    Article  Google Scholar 

  37. Toomey EC, Schiffman JD, Lessnick SL. Recent advances in the molecular pathogenesis of Ewing’s sarcoma. Oncogene. 2010;29(32):4504–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hogendoorn PCW, et al. Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21(suppl_5):v204–13.

    Article  PubMed  Google Scholar 

  39. Gerrand C, et al. UK guidelines for the management of bone sarcomas. Clin Sarcoma Res. 2016;6(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64.

    Article  CAS  PubMed  Google Scholar 

  41. Vincenzi B, et al. Bone metastases in soft tissue sarcoma: a survey of natural history, prognostic value and treatment options. Clin Sarcoma Res. 2013;3(1):6.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Käkönen S-M, Mundy GR. Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer. 2003;97(S3):834–9.

    Article  PubMed  Google Scholar 

  43. Mundy GR. Metastasis: metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2(8):584–93.

    Article  CAS  PubMed  Google Scholar 

  44. Krzeszinski JY, Wan Y. New therapeutic targets for cancer bone metastases. Trends Pharmacol Sci. 2015;36(6):360–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Coleman RE. Skeletal complications of malignancy. Cancer. 1997;80(8 Suppl):1588–94.

    Article  CAS  PubMed  Google Scholar 

  46. Paterson AH, et al. Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol. 1993;11(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  47. Ahern E, Doody T, Ryan KB. Bioinspired nanomaterials for bone tissue engineering. In: Tiwari A, Tiwari A, editors. Bioengineered nanomaterials. Boca Raton; London; New York: CRC, Taylor & Francis Group; 2014. p. 369–412.

    Google Scholar 

  48. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010;285(33):25103–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ren G, Esposito M, Kang Y. Bone metastasis and the metastatic niche. J Mol Med. 2015;93(11):1203–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008;11(5):18–25.

    Article  CAS  Google Scholar 

  51. Kimura Y, et al. Alteration of osteoblast arrangement via direct attack by cancer cells: new insights into bone metastasis. Sci Rep. 2017;7:44824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Landis WJ. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone. 1995;16(5):533–44.

    Article  CAS  PubMed  Google Scholar 

  53. Msaouel P, et al. Bone microenvironment-targeted manipulations for the treatment of osteoblastic metastasis in castration-resistant prostate cancer. Expert Opin Investig Drugs. 2013;22(11):1385–400.

    Article  CAS  PubMed  Google Scholar 

  54. Sartawi Z, et al. Sphingosine 1-phosphate (S1P) signalling: role in bone biology and potential therapeutic target for bone repair. Pharmacol Res. 2017;125(Part B):232–45.

    Article  CAS  PubMed  Google Scholar 

  55. Prideaux M, Findlay DM, Atkins GJ. Osteocytes: the master cells in bone remodelling. Curr Opin Pharmacol. 2016;28:24–30.

    Article  CAS  PubMed  Google Scholar 

  56. Schaffler MB, et al. Osteocytes: master orchestrators of bone. Calcif Tissue Int. 2014;94(1):5–24.

    Article  CAS  PubMed  Google Scholar 

  57. Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38.

    Article  CAS  PubMed  Google Scholar 

  58. Lynch ME, Fischbach C. Biomechanical forces in the skeleton and their relevance to bone metastasis: biology and engineering considerations. Adv Drug Deliv Rev. 2014;79–80:119–34.

    Article  PubMed  CAS  Google Scholar 

  59. Bellido T. Osteocyte apoptosis induces bone resorption and impairs the skeletal response to weightlessness. IBMS BoneKey. 2007;4(9):252–6.

    Article  Google Scholar 

  60. Sekita A, et al. Synchronous disruption of anisotropic arrangement of the osteocyte network and collagen/apatite in melanoma bone metastasis. J Struct Biol. 2017;197(3):260–70.

    Article  CAS  PubMed  Google Scholar 

  61. Hauge EM, et al. Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res. 2001;16(9):1575–82.

    Article  CAS  PubMed  Google Scholar 

  62. Dwek JR. The periosteum: what is it, where is it, and what mimics it in its absence? Skelet Radiol. 2010;39(4):319–23.

    Article  Google Scholar 

  63. Suda T, et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev. 1999;20(3):345–57.

    Article  CAS  PubMed  Google Scholar 

  64. Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther. 2007;9(Suppl 1):S1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Wright HL, et al. RANK, RANKL and osteoprotegerin in bone biology and disease. Curr Rev Muscoskelet Med. 2009;2(1):56–64.

    Article  CAS  Google Scholar 

  66. Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350(16):1655–64.

    Article  CAS  PubMed  Google Scholar 

  67. Yasuda H, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95(7):3597–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Malanchi I, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012;481(7379):85–9.

    Article  CAS  Google Scholar 

  69. Massague J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature. 2016;529(7586):298–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mlecnik B, et al. The tumor microenvironment and immunoscore are critical determinants of dissemination to distant metastasis. Sci Transl Med. 2016;8(327):327ra26.

    Article  PubMed  CAS  Google Scholar 

  71. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168(4):670–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gupta GP, Massagué J. Cancer metastasis: building a framework. Cell. 2006;127(4):679–95.

    Article  CAS  PubMed  Google Scholar 

  73. Paget S. The distribution of secondary growths in cancer of the breast. Lancet. 1889;133(3421):571–3.

    Article  Google Scholar 

  74. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8.

    Article  CAS  PubMed  Google Scholar 

  75. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Peinado H, et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer. 2017;17(5):302–17.

    Article  CAS  PubMed  Google Scholar 

  77. McAllister SS, et al. Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell. 2008;133(6):994–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Thiery JP, Lim CT. Tumor dissemination: an EMT affair. Cancer Cell. 2013;23(3):272–3.

    Article  CAS  PubMed  Google Scholar 

  79. Vanharanta S, Massagué J. Origins of metastatic traits. Cancer Cell. 2013;24(4):410–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Guo W, Giancotti FG. Integrin signalling during tumour progression. Nat Rev Mol Cell Biol. 2004;5(10):816–26.

    Article  CAS  PubMed  Google Scholar 

  81. Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004;4(7):540–50.

    Article  CAS  PubMed  Google Scholar 

  82. Geminder H, et al. A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol. 2001;167(8):4747–57.

    Article  CAS  PubMed  Google Scholar 

  83. Muller A, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6.

    Article  CAS  PubMed  Google Scholar 

  84. Sun Y-X, et al. Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res. 2005;20(2):318–29.

    Article  CAS  PubMed  Google Scholar 

  85. Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol. 2004;14(3):171–9.

    Article  CAS  PubMed  Google Scholar 

  86. Lehr JE, Pienta KJ. Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line. J Natl Cancer Inst. 1998;90(2):118–23.

    Article  CAS  PubMed  Google Scholar 

  87. Schneider JG, Amend SH, Weilbaecher KN. Integrins and bone metastasis: Integrating tumor cell and stromal cell interactions. Bone. 2011;48(1):54–65.

    Article  CAS  PubMed  Google Scholar 

  88. Clezardin P. Integrins in bone metastasis formation and potential therapeutic implications. Curr Cancer Drug Targets. 2009;9(7):801–6.

    Article  CAS  PubMed  Google Scholar 

  89. Nakamura I, et al. Involvement of αvβ3 integrins in osteoclast function. J Bone Miner Metab. 2007;25(6):337–44.

    Article  CAS  PubMed  Google Scholar 

  90. Mori Y, et al. Anti-α4 integrin antibody suppresses the development of multiple myeloma and associated osteoclastic osteolysis. Blood. 2004;104(7):2149–54.

    Article  CAS  PubMed  Google Scholar 

  91. Esposito M, Kang Y. Targeting tumor–stromal interactions in bone metastasis. Pharmacol Ther. 2014;141(2):222–33.

    Article  CAS  PubMed  Google Scholar 

  92. Sipkins DA, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumor engraftment. Nature. 2005;435(7044):969–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Natoni A, Macauley MS, O’Dwyer ME. Targeting selectins and their ligands in cancer. Front Oncol. 2016;6:93.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Burdick MM, et al. Expression of E-selectin ligands on circulating tumor cells: cross-regulation with cancer stem cell regulatory pathways? Front Oncol. 2012;2:103.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Dimitroff CJ, et al. Rolling of human bone-metastatic prostate tumor cells on human bone marrow endothelium under shear flow is mediated by E-selectin. Cancer Res. 2004;64(15):5261–9.

    Article  CAS  PubMed  Google Scholar 

  96. Ghajar CM. Metastasis prevention by targeting the dormant niche. Nat Rev Cancer. 2015;15(4):238–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lewis Q, Penelope DO, Ingunn H. Bone metastasis: molecular mechanisms implicated in tumour cell dormancy in breast and prostate cancer. Curr Cancer Drug Targets. 2015;15(6):469–80.

    Article  CAS  Google Scholar 

  98. Giancotti FG. Mechanisms governing metastatic dormancy and reactivation. Cell. 2013;155(4):750–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bragado P, et al. TGFβ2 dictates disseminated tumour cell fate in target organs through TGFβ-RIII and p38α/β signalling. Nat Cell Biol. 2013;15(11):1351–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kobayashi A, et al. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med. 2011;208(13):2641–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Obenauf AC, Massagué J. Surviving at a distance: organ specific metastasis. Trends Cancer. 2015;1(1):76–91.

    Article  PubMed Central  Google Scholar 

  102. Zhang XHF, et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell. 2009;16(1):67–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nadar RA, et al. Bisphosphonate-functionalized imaging agents, anti-tumor agents and nanocarriers for treatment of bone cancer. Adv Healthc Mater. 2017;6(8):1601119–n/a.

    Article  CAS  Google Scholar 

  104. Guise TA, et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest. 1996;98(7):1544–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yin JJ, et al. TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest. 1999;103(2):197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lynch CC. Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone. 2011;48(1):44–53.

    Article  CAS  PubMed  Google Scholar 

  107. Kang Y, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3(6):537–49.

    Article  CAS  PubMed  Google Scholar 

  108. Sethi N, et al. Tumor-derived Jagged1 promotes osteolytic bone metastasis of breast cancer by engaging Notch signaling in bone cells. Cancer Cell. 2011;19(2):192–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Canon JR, et al. Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clin Exp Metastasis. 2008;25(2):119–29.

    Article  CAS  PubMed  Google Scholar 

  110. Ikushima H, Miyazono K. TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer. 2010;10(6):415–24.

    Article  CAS  PubMed  Google Scholar 

  111. Korpal M, et al. Imaging transforming growth factor-[beta] signaling dynamics and therapeutic response in breast cancer bone metastasis. Nat Med. 2009;15(8):960–6.

    Article  CAS  PubMed  Google Scholar 

  112. Wang H, et al. Bone-in-culture array as a platform to model early-stage bone metastases and discover anti-metastasis therapies. Nat Commun. 2017;8:15045.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Suva LJ, et al. Bone metastasis: mechanisms and therapeutic opportunities. Nat Rev Endocrinol. 2011;7(4):208–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dai X, et al. Review of therapeutic strategies for osteosarcoma, chondrosarcoma, and Ewing’s sarcoma. Med Sci Monit. 2011;17(8):Ra177–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Seibel MJ. Clinical use of markers of bone turnover in metastatic bone disease. Nat Clin Pract Oncol. 2005;2(10):504–17.

    Article  CAS  PubMed  Google Scholar 

  116. Mavrogenis AF, Ruggieri P. Chapter 34—Therapeutic approaches for bone sarcomas A2—Heymann, Dominique. In: Bone cancer. 2nd ed. San Diego: Academic; 2015. p. 407–14.

    Chapter  Google Scholar 

  117. Whelan J, et al. EURAMOS collaborators. EURAMOS-1, an international randomised study for osteosarcoma: results from pre-randomisation treatment. Ann Oncol. 2015;26:407–14.

    Article  CAS  PubMed  Google Scholar 

  118. Anninga JK, et al. Chemotherapeutic adjuvant treatment for osteosarcoma: where do we stand? Eur J Cancer. 2011;47(16):2431–45.

    Article  CAS  PubMed  Google Scholar 

  119. Heare T, Hensley MA, Dell’Orfano S. Bone tumors: osteosarcoma and Ewing’s sarcoma. Curr Opin Pediatr. 2009;21(3):365–72.

    Article  PubMed  Google Scholar 

  120. Hattinger CM, et al. Advances in emerging drugs for osteosarcoma. Expert Opin Emerg Drugs. 2015;20(3):495–514.

    Article  CAS  PubMed  Google Scholar 

  121. Kohno N. Treatment of breast cancer with bone metastasis: bisphosphonate treatment—current and future. Int J Clin Oncol. 2008;13(1):18–23.

    Article  CAS  PubMed  Google Scholar 

  122. Roelofs AJ, et al. Molecular mechanisms of action of bisphosphonates: current status. Clin Cancer Res. 2006;12(20):6222s–30s.

    Article  CAS  PubMed  Google Scholar 

  123. Rosen LS, et al. Long-term efficacy and safety of zoledronic acid in the treatment of skeletal metastases in patients with nonsmall cell lung carcinoma and other solid tumors. Cancer. 2004;100(12):2613–21.

    Article  CAS  PubMed  Google Scholar 

  124. Clemons MJ, et al. Phase II trial evaluating the palliative benefit of second-line zoledronic acid in breast cancer patients with either a skeletal-related event or progressive bone metastases despite first-line bisphosphonate therapy. J Clin Oncol. 2006;24(30):4895–900.

    Article  CAS  PubMed  Google Scholar 

  125. Akiyama T, Dass CR, Choong PFM. Novel therapeutic strategy for osteosarcoma targeting osteoclast differentiation, bone-resorbing activity, and apoptosis pathway. Mol Cancer Ther. 2008;7(11):3461–9.

    Article  CAS  PubMed  Google Scholar 

  126. Lacey DL, et al. Bench to bedside: elucidation of the OPG–RANK–RANKL pathway and the development of denosumab. Nat Rev Drug Discov. 2012;11(5):401–19.

    Article  CAS  PubMed  Google Scholar 

  127. Gül G, et al. A comprehensive review of denosumab for bone metastasis in patients with solid tumors. Curr Med Res Opin. 2016;32(1):133–45.

    Article  PubMed  CAS  Google Scholar 

  128. Lewiecki EM. RANK ligand inhibition with denosumab for the management of osteoporosis. Expert Opin Biol Ther. 2006;6(10):1041–50.

    Article  CAS  PubMed  Google Scholar 

  129. Vignani F, et al. Skeletal metastases and impact of anticancer and bone-targeted agents in patients with castration-resistant prostate cancer. Cancer Treat Rev. 2016;44:61–73.

    Article  CAS  PubMed  Google Scholar 

  130. Botter SM, Neri D, Fuchs B. Recent advances in osteosarcoma. Curr Opin Pharmacol. 2014;16:15–23.

    Article  CAS  PubMed  Google Scholar 

  131. Body J-J, et al. Systematic review and meta-analysis on the proportion of patients with breast cancer who develop bone metastases. Crit Rev Oncol Hematol. 2017;115:67–80.

    Article  PubMed  Google Scholar 

  132. Ta HT, et al. A chitosan-dipotassium orthophosphate hydrogel for the delivery of Doxorubicin in the treatment of osteosarcoma. Biomaterials. 2009;30(21):3605–13.

    Article  CAS  PubMed  Google Scholar 

  133. Yang L, Webster TJ. Nanotechnology controlled drug delivery for treating bone diseases. Expert Opin Drug Deliv. 2009;6(8):851–64.

    Article  CAS  PubMed  Google Scholar 

  134. Low SA, Kopecek J. Targeting polymer therapeutics to bone. Adv Drug Deliv Rev. 2012;64(12):1189–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Adjei IM, et al. Inhibition of bone loss with surface-modulated, drug-loaded nanoparticles in an intraosseous model of prostate cancer. J Control Release. 2016;232:83–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nan M, Yangmei C, Bangcheng Y. Magnesium metal—a potential biomaterial with antibone cancer properties. J Biomed Mater Res A. 2014;102(8):2644–51.

    Article  PubMed  CAS  Google Scholar 

  137. Iafisco M, Margiotta N. Silica xerogels and hydroxyapatite nanocrystals for the local delivery of platinum-bisphosphonate complexes in the treatment of bone tumors: a mini-review. J Inorg Biochem. 2012;117:237–47.

    Article  CAS  PubMed  Google Scholar 

  138. Swami A, et al. Engineered nanomedicine for myeloma and bone microenvironment targeting. Proc Natl Acad Sci U S A. 2014;111(28):10287–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gu W, et al. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Int J Nanomed. 2013;8:2305–17.

    Article  CAS  Google Scholar 

  140. Tautzenberger A, Kovtun A, Ignatius A. Nanoparticles and their potential for application in bone. Int J Nanomed. 2012;7:4545–57.

    Article  CAS  Google Scholar 

  141. Alexis F, et al. Nanoparticle technologies for cancer therapy. Handb Exp Pharmacol. 2010;197:55–86.

    Article  CAS  Google Scholar 

  142. Liu H, Webster TJ. Bioinspired nanocomposites for orthopedic applications. Singapore: World Scientific; 2007.

    Book  Google Scholar 

  143. Vilar G, Tulla-Puche J, Albericio F. Polymers and drug delivery systems. Curr Drug Deliv. 2012;9(4):367–94.

    Article  CAS  PubMed  Google Scholar 

  144. Miller K, et al. Poly(ethylene glycol)–paclitaxel–alendronate self-assembled micelles for the targeted treatment of breast cancer bone metastases. Biomaterials. 2013;34(15):3795–806.

    Article  CAS  PubMed  Google Scholar 

  145. de Miguel L, et al. Poly(γ-benzyl-l-glutamate)-PEG-alendronate multivalent nanoparticles for bone targeting. Int J Pharm. 2014;460(1):73–82.

    Article  PubMed  CAS  Google Scholar 

  146. Segal E, et al. Enhanced anti-tumor activity and safety profile of targeted nano-scaled HPMA copolymer-alendronate-TNP-470 conjugate in the treatment of bone malignances. Biomaterials. 2011;32(19):4450–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Segal E, et al. Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics. PLoS One. 2009;4(4):e5233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Nanjwade BK, et al. Dendrimers: emerging polymers for drug-delivery systems. Eur J Pharm Sci. 2009;38(3):185–96.

    Article  CAS  PubMed  Google Scholar 

  149. Clementi C, et al. Dendritic poly(ethylene glycol) bearing paclitaxel and alendronate for targeting bone neoplasms. Mol Pharm. 2011;8(4):1063–72.

    Article  CAS  PubMed  Google Scholar 

  150. Galvin P, et al. Nanoparticle-based drug delivery: case studies for cancer and cardiovascular applications. Cell Mol Life Sci. 2012;69(3):389–404.

    Article  CAS  PubMed  Google Scholar 

  151. Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomater. 2013;9(9):8037–45.

    Article  CAS  PubMed  Google Scholar 

  152. Verron E, et al. Calcium phosphate biomaterials as bone drug delivery systems: a review. Drug Discov Today. 2010;15(13):547–52.

    Article  CAS  PubMed  Google Scholar 

  153. O’Sullivan C, et al. A modified surface on titanium deposited by a blasting process. Coatings. 2011;1(1):53–71.

    Article  CAS  Google Scholar 

  154. O'Sullivan C, et al. Deposition of substituted apatites with anticolonizing properties onto titanium surfaces using a novel blasting process. J Biomed Mater Res B Appl Biomater. 2010;95B(1):141–9.

    Article  CAS  Google Scholar 

  155. Lopez-Heredia MA, et al. An injectable calcium phosphate cement for the local delivery of paclitaxel to bone. Biomaterials. 2011;32(23):5411–6.

    Article  CAS  PubMed  Google Scholar 

  156. Itokazu M, et al. Development of porous apatite ceramic for local delivery of chemotherapeutic agents. J Biomed Mater Res A. 1998;39(4):536–8.

    Article  CAS  Google Scholar 

  157. Palazzo B, et al. Biomimetic hydroxyapatite–drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv Funct Mater. 2007;17(13):2180–8.

    Article  CAS  Google Scholar 

  158. Abe T, et al. Intraosseous delivery of paclitaxel-loaded hydroxyapatitealginate composite beads delaying paralysis caused by metastatic spine cancer in rats. J Neurosurg Spine. 2008;9(5):502–10.

    Article  PubMed  Google Scholar 

  159. Polo L, et al. Molecular gates in mesoporous bioactive glasses for the treatment of bone tumors and infection. Acta Biomater. 2017;50:114–26.

    Article  CAS  PubMed  Google Scholar 

  160. He Q, et al. Development of individualized anti-metastasis strategies by engineering nanomedicines. Chem Soc Rev. 2015;44(17):6258–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rahim M, et al. Glycation-assisted synthesized gold nanoparticles inhibit growth of bone cancer cells. Colloids Surf B Biointerfaces. 2014;117:473–9.

    Article  CAS  PubMed  Google Scholar 

  162. Tran PA, et al. Titanium surfaces with adherent selenium nanoclusters as a novel anticancer orthopedic material. J Biomed Mater Res A. 2010;93(4):1417–28.

    PubMed  Google Scholar 

  163. Tran P, Webster TJ. Enhanced osteoblast adhesion on nanostructured selenium compacts for anti-cancer orthopedic applications. Int J Nanomed. 2008;3(3):391–6.

    CAS  Google Scholar 

  164. Tani T, et al. Doxorubicin-loaded calcium phosphate cement in the management of bone and soft tissue tumors. In Vivo. 2006;20(1):55–60.

    CAS  PubMed  Google Scholar 

  165. Sun W, et al. Bone-targeted mesoporous silica nanocarrier anchored by zoledronate for cancer bone metastasis. Langmuir. 2016;32(36):9237–44.

    Article  CAS  PubMed  Google Scholar 

  166. Sun M, et al. A tissue-engineered therapeutic device inhibits tumor growth in vitro and in vivo. Acta Biomater. 2015;18:21–9.

    Article  CAS  PubMed  Google Scholar 

  167. Iyer AK, et al. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006;11(17):812–8.

    Article  CAS  PubMed  Google Scholar 

  168. Pignatello R, Sarpietro MG, Castelli F. Synthesis and biological evaluation of a new polymeric conjugate and nanocarrier with osteotropic properties. J Funct Biomater. 2012;3(1):79–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Grundy M, Coussios C, Carlisle R. Advances in systemic delivery of anti-cancer agents for the treatment of metastatic cancer. Expert Opin Drug Deliv. 2016;13(7):999–1013.

    Article  CAS  PubMed  Google Scholar 

  170. Doolittle E, et al. Spatiotemporal targeting of a dual-ligand nanoparticle to cancer metastasis. ACS Nano. 2015;9(8):8012–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Prabhakar U, et al. Challenges and key considerations of the enhanced permeability and retention (EPR) effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73(8):2412–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev. 2015;91(Supplement C):3–6.

    Article  CAS  PubMed  Google Scholar 

  173. Greco F, Vicent MJ. Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliv Rev. 2009;61(13):1203–13.

    Article  CAS  PubMed  Google Scholar 

  174. Pignatello R, et al. A novel biomaterial for osteotropic drug nanocarriers: synthesis and biocompatibility evaluation of a PLGA-ALE conjugate. Nanomedicine (Lond). 2009;4(2):161–75.

    Article  CAS  Google Scholar 

  175. Mu Q, Wang H, Zhang M. Nanoparticles for imaging and treatment of metastatic breast cancer. Expert Opin Drug Deliv. 2017;14(1):123–36.

    Article  CAS  PubMed  Google Scholar 

  176. Segal E, Satchi-Fainaro R. Design and development of polymer conjugates as anti-angiogenic agents. Adv Drug Deliv Rev. 2009;61(13):1159–76.

    Article  CAS  PubMed  Google Scholar 

  177. Ferreira Ddos S, et al. Development of a bone-targeted pH-sensitive liposomal formulation containing doxorubicin: physicochemical characterization, cytotoxicity, and biodistribution evaluation in a mouse model of bone metastasis. Int J Nanomed. 2016;11:3737–51.

    Article  Google Scholar 

  178. Ye WL, et al. Doxorubicin-poly (ethylene glycol)-alendronate self-assembled micelles for targeted therapy of bone metastatic cancer. Sci Rep. 2015;5:14614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wang D, et al. Bone-targeting macromolecular therapeutics. Adv Drug Deliv Rev. 2005;57(7):1049–76.

    Article  CAS  PubMed  Google Scholar 

  180. Thamake SI, et al. Alendronate coated poly-lactic-co-glycolic acid (PLGA) nanoparticles for active targeting of metastatic breast cancer. Biomaterials. 2012;33(29):7164–73.

    Article  CAS  PubMed  Google Scholar 

  181. D'Souza S, et al. Engineering of cell membranes with a bisphosphonate-containing polymer using ATRP synthesis for bone targeting. Biomaterials. 2014;35(35):9447–58.

    Article  PubMed  CAS  Google Scholar 

  182. Cole LE, Vargo-Gogola T, Roeder RK. Targeted delivery to bone and mineral deposits using bisphosphonate ligands. Adv Drug Deliv Rev. 2016;99(Part A):12–27.

    Article  CAS  PubMed  Google Scholar 

  183. Neville-Webbe HL, Gnant M, Coleman RE. Potential anticancer properties of bisphosphonates. Semin Oncol. 2010;37:S53–65.

    Article  CAS  PubMed  Google Scholar 

  184. Nguyen TD, Pitchaimani A, Aryal S. Engineered nanomedicine with alendronic acid corona improves targeting to osteosarcoma. Sci Rep. 2016;6:36707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. He Y, et al. Bisphosphonate-functionalized coordination polymer nanoparticles for the treatment of bone metastatic breast cancer. J Control Release. 2017;264(Supplement C):76–88.

    Article  CAS  PubMed  Google Scholar 

  186. Yin Q, et al. Pamidronate functionalized nanoconjugates for targeted therapy of focal skeletal malignant osteolysis. Proc Natl Acad Sci U S A. 2016;113(32):E4601–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Murphy MB, et al. Synthesis and in vitro hydroxyapatite binding of peptides conjugated to calcium-binding moieties. Biomacromolecules. 2007;8(7):2237–43.

    Article  CAS  PubMed  Google Scholar 

  188. Jiang T, et al. Poly aspartic acid peptide-linked PLGA based nanoscale particles: potential for bone-targeting drug delivery applications. Int J Pharm. 2014;475(1):547–57.

    Article  CAS  PubMed  Google Scholar 

  189. Fu Y-C, et al. Aspartic acid-based modified PLGA–PEG nanoparticles for bone targeting: in vitro and in vivo evaluation. Acta Biomater. 2014;10(11):4583–96.

    Article  CAS  PubMed  Google Scholar 

  190. Salerno M, et al. Bone-targeted doxorubicin-loaded nanoparticles as a tool for the treatment of skeletal metastases. Curr Cancer Drug Targets. 2010;10(7):649–59.

    Article  CAS  PubMed  Google Scholar 

  191. Ramanlal Chaudhari K, et al. Bone metastasis targeting: a novel approach to reach bone using Zoledronate anchored PLGA nanoparticle as carrier system loaded with Docetaxel. J Control Release. 2012;158(3):470–8.

    Article  CAS  PubMed  Google Scholar 

  192. Sutherland M, et al. RGD-binding integrins in prostate cancer: expression patterns and therapeutic prospects against bone metastasis. Cancers. 2012;4(4):1106–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10(1):9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Bakewell SJ, et al. Platelet and osteoclast β3 integrins are critical for bone metastasis. Proc Natl Acad Sci. 2003;100(24):14205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wang F, et al. RGD peptide conjugated liposomal drug delivery system for enhance therapeutic efficacy in treating bone metastasis from prostate cancer. J Control Release. 2014;196:222–33.

    Article  CAS  PubMed  Google Scholar 

  196. Jubeli E, et al. E-selectin as a target for drug delivery and molecular imaging. J Control Release. 2012;158(2):194–206.

    Article  CAS  PubMed  Google Scholar 

  197. Price TT, et al. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci Transl Med. 2016;8(340):340ra73.

    Article  PubMed  Google Scholar 

  198. Price TT, Sipkins DA. E-Selectin and SDF-1 regulate metastatic trafficking of breast cancer cells within the bone. Mol Cell Oncol. 2017;4(4):e1214771.

    Article  PubMed  CAS  Google Scholar 

  199. Morita Y, et al. E-selectin targeting PEGylated-thioaptamer prevents breast cancer metastases. Mol Ther Nucleic Acids. 2016;5(Supplement C):e399.

    Article  CAS  PubMed  Google Scholar 

  200. Federman N, et al. Enhanced growth inhibition of osteosarcoma by cytotoxic polymerized liposomal nanoparticles targeting the alcam cell surface receptor. Sarcoma. 2012;2012:126906.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Mai J, et al. Bone marrow endothelium-targeted therapeutics for metastatic breast cancer. J Control Release. 2014;187:22–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Mann AP, et al. E-selectin-targeted porous silicon particle for nanoparticle delivery to the bone marrow. Adv Mater. 2011;23(36):H278–82.

    Article  CAS  PubMed  Google Scholar 

  203. Shamay Y, et al. E-selectin binding peptide–polymer–drug conjugates and their selective cytotoxicity against vascular endothelial cells. Biomaterials. 2009;30(32):6460–8.

    Article  CAS  PubMed  Google Scholar 

  204. Jubeli E, et al. Preparation of E-selectin-targeting nanoparticles and preliminary in vitro evaluation. Int J Pharm. 2012;426(1):291–301.

    Article  CAS  PubMed  Google Scholar 

  205. Mo S, et al. Ultrasound-enhanced drug delivery for cancer. Expert Opin Drug Deliv. 2012;9(12):1525–38.

    Article  CAS  PubMed  Google Scholar 

  206. Mitragotri S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov. 2005;4(3):255–60.

    Article  CAS  PubMed  Google Scholar 

  207. Boissenot T, et al. Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: From theoretical considerations to practical applications. J Control Release. 2016;241:144–63.

    Article  CAS  PubMed  Google Scholar 

  208. Napoli A, et al. MR imaging–guided focused ultrasound for treatment of bone metastasis. Radiographics. 2013;33(6):1555–68.

    Article  PubMed  Google Scholar 

  209. Rodrigues DB, et al. Focused ultrasound for treatment of bone tumours. Int J Hyperth. 2015;31(3):260–71.

    Article  Google Scholar 

  210. Liberman B, et al. Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: a multicenter study. Ann Surg Oncol. 2009;16(1):140–6.

    Article  PubMed  Google Scholar 

  211. Huisman M, et al. International consensus on use of focused ultrasound for painful bone metastases: current status and future directions. Int J Hyperth. 2015;31(3):251–9.

    Article  Google Scholar 

  212. Staruch R, Chopra R, Hynynen K. Hyperthermia in bone generated with MR imaging-controlled focused ultrasound: control strategies and drug delivery. Radiology. 2012;263(1):117–27.

    Article  PubMed  Google Scholar 

  213. Ta T, Porter TM. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J Control Release. 2013;169(1–2):112–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Sersa G, et al. Electrochemotherapy in treatment of tumours. Eur J Surg Oncol. 2008;34(2):232–40.

    Article  CAS  PubMed  Google Scholar 

  215. Teissié J, et al. Drug delivery by electropulsation: recent developments in oncology. Int J Pharm. 2012;423(1):3–6.

    Article  PubMed  CAS  Google Scholar 

  216. Miklavcic D, et al. Importance of tumour coverage by sufficiently high local electric field for effective electrochemotherapy. Eur J Cancer Suppl. 2006;4(11):45–51.

    Article  Google Scholar 

  217. Mir LM. Bases and rationale of the electrochemotherapy. Eur J Cancer Suppl. 2006;4(11):38–44.

    Article  Google Scholar 

  218. Miklavcic D, et al. Electrochemotherapy: from the drawing board into medical practice. Biomed Eng Online. 2014;13:29.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Cadossi R, Ronchetti M, Cadossi M. Locally enhanced chemotherapy by electroporation: clinical experiences and perspective of use of electrochemotherapy. Future Oncol. 2014;10(5):877–90.

    Article  CAS  PubMed  Google Scholar 

  220. Sersa G, et al. Vascular disrupting action of electroporation and electrochemotherapy with bleomycin in murine sarcoma. Br J Cancer. 2008;98(2):388–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Jarm T, et al. Antivascular effects of electrochemotherapy: implications in treatment of bleeding metastases. Expert Rev Anticancer Ther. 2010;10(5):729–46.

    Article  PubMed  Google Scholar 

  222. Miklavcic D, et al. Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors. Med Biol Eng Comput. 2012;50(12):1213–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Fini M, et al. Electrochemotherapy is effective in the treatment of rat bone metastases. Clin Exp Metastasis. 2013;30(8):1033–45.

    Article  CAS  PubMed  Google Scholar 

  224. Bianchi G, Campanacci L, Donati D. Electrochemotherapy in bone metastases: results of a phase II study. In: Janco K, Gregor S, Tamara Lah T, Maja C, Metka F, Simona K, Boštjan M, editors. Conference on Experimental and Translational Oncology. Slovenia: Association of Radiology and Oncology; 2013.

    Google Scholar 

  225. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Cheng H, et al. Development of nanomaterials for bone-targeted drug delivery. Drug Discov Today. 2017;22(9):1336–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Christian Waeber for his helpful comments during the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katie B. Ryan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Forde, P.F., Ryan, K.B. (2017). Biomaterial-Mediated Drug Delivery in Primary and Metastatic Cancers of the Bone. In: Li, B., Webster, T. (eds) Orthopedic Biomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-73664-8_20

Download citation

Publish with us

Policies and ethics