Skip to main content

Nivat’s Conjecture Holds for Sums of Two Periodic Configurations

  • Conference paper
  • First Online:
SOFSEM 2018: Theory and Practice of Computer Science (SOFSEM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10706))

Abstract

Nivat’s conjecture is a long-standing open combinatorial problem. It concerns two-dimensional configurations, that is, maps \(\mathbb {Z}^2 \rightarrow \mathcal {A}\) where \(\mathcal {A}\) is a finite set of symbols. Such configurations are often understood as colorings of a two-dimensional square grid. Let \(P_c(m,n)\) denote the number of distinct \(m \times n\) block patterns occurring in a configuration c. Configurations satisfying \(P_c(m,n) \le mn\) for some \(m,n \in \mathbb {N}\) are said to have low rectangular complexity. Nivat conjectured that such configurations are necessarily periodic.

Recently, Kari and the author showed that low complexity configurations can be decomposed into a sum of periodic configurations. In this paper we show that if there are at most two components, Nivat’s conjecture holds. As a corollary we obtain an alternative proof of a result of Cyr and Kra: If there exist \(m,n \in \mathbb {N}\) such that \(P_c(m,n) \le mn/2\), then c is periodic. The technique used in this paper combines the algebraic approach of Kari and the author with balanced sets of Cyr and Kra.

M. Szabados—Research supported by the Academy of Finland Grant 296018.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the most of this paper, however, it is enough to consider configurations to be elements of \(\mathbb {C}^{\mathbb {Z}^d}\).

References

  1. Allouche, J., Shallit, J.: Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  2. Boyle, M., Lind, D.: Expansive subdynamics. Trans. Am. Math. Soc. 349(1), 55–102 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cassaigne, J.: Double sequences with complexity mn+1. J. Autom. Lang. Comb. 4(3), 153–170 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Cyr, V., Kra, B.: Complexity of short rectangles and periodicity. Eur. J. Comb. Part A 52, 146–173 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cyr, V., Kra, B.: Nonexpansive \(\mathbb{Z}^2\)-subdynamics and Nivat’s conjecture. Trans. Am. Math. Soc. 367(9), 6487–6537 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Damanik, D., Lenz, D.: Uniform spectral properties of one-dimensional quasicrystals, I. Absence of eigenvalues. Commun. Math. Phys. 207(3), 687–696 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Epifanio, C., Koskas, M., Mignosi, F.: On a conjecture on bidimensional words. Theoret. Comput. Sci. 299(1–3), 123–150 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kari, J., Szabados, M.: An algebraic geometric approach to Nivat’s conjecture. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 273–285. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_22

    Chapter  Google Scholar 

  9. Kari, J., Szabados, M.: An algebraic geometric approach to Nivat’s conjecture. arXiv:1605.05929 (2016)

  10. Kůrka, P.: Topological and Symbolic Dynamics. Collection SMF, Société mathématique de France (2003)

    Google Scholar 

  11. Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  12. Morse, M., Hedlund, G.A.: Symbolic dynamics. Am. J. Math. 60(4), 815–866 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nivat, M.: Invited talk at ICALP, Bologna (1997)

    Google Scholar 

  14. Quas, A., Zamboni, L.Q.: Periodicity and local complexity. Theoret. Comput. Sci. 319(1–3), 229–240 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sander, J.W., Tijdeman, R.: The complexity of functions on lattices. Theoret. Comput. Sci. 246(1–2), 195–225 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sander, J.W., Tijdeman, R.: The rectangle complexity of functions on two-dimensional lattices. Theoret. Comput. Sci. 270(1–2), 857–863 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Szabados .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Szabados, M. (2018). Nivat’s Conjecture Holds for Sums of Two Periodic Configurations. In: Tjoa, A., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds) SOFSEM 2018: Theory and Practice of Computer Science. SOFSEM 2018. Lecture Notes in Computer Science(), vol 10706. Edizioni della Normale, Cham. https://doi.org/10.1007/978-3-319-73117-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73117-9_38

  • Published:

  • Publisher Name: Edizioni della Normale, Cham

  • Print ISBN: 978-3-319-73116-2

  • Online ISBN: 978-3-319-73117-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics