Skip to main content

Complete Algorithms for Algebraic Strongest Postconditions and Weakest Preconditions in Polynomial ODE’S

  • Conference paper
  • First Online:
SOFSEM 2018: Theory and Practice of Computer Science (SOFSEM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10706))

Abstract

A system of polynomial ordinary differential equations (ode’s) is specified via a vector of multivariate polynomials, or vector field, F. A safety assertion \(\psi \longrightarrow [F]\,\phi \) means that the system’s trajectory will lie in a subset \(\phi \) (the postcondition) of the state-space, whenever the initial state belongs to a subset \(\psi \) (the precondition). We consider the case when \(\phi \) and \(\psi \) are algebraic varieties, that is, zero sets of polynomials. In particular, polynomials specifying the postcondition can be seen as conservation laws implied by \(\psi \). Checking the validity of algebraic safety assertions is a fundamental problem in, for instance, hybrid systems. We consider generalized versions of this problem, and offer algorithms to: (1) given a user specified polynomial set P and a precondition \(\psi \), find the smallest algebraic postcondition \(\phi \) including the variety determined by the valid conservation laws in P (relativized strongest postcondition); (2) given a user specified postcondition \(\phi \), find the largest algebraic precondition \(\psi \) (weakest precondition). The first algorithm can also be used to find the weakest algebraic invariant of the system implying all conservation laws in P valid under \(\psi \). The effectiveness of these algorithms is demonstrated on a challenging case study from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Provided the involved coefficients can be finitely represented, e.g. are rational.

  2. 2.

    Any elimination ordering [8] for the parameters \(a_i\) could as well be considered.

  3. 3.

    Note that linear expressions with a constant term, such as \(2+5a_1 +42a_2-3a_3\) are not allowed.

  4. 4.

    For instance, if \(\pi =(a_1+a_2)x_1+a_3x_2\) then \(\pi [v]=0\) corresponds to the constraints \(a_1=-a_2\) and \(a_3=0\).

  5. 5.

    Code and examples available at http://local.disia.unifi.it/boreale/papers/PrePost.py.

  6. 6.

    We could dispense with them by considering a complete template of degree 3.

  7. 7.

    For instance, one should compare the polynomial \(\psi _3=q^2-2 {\theta }(M/{I_{yy}})\), which is part of the invariant cluster in [10], with our polynomial \(- ( 1/2) q^2 + \theta (M/{I_{yy}}) + ( 1/2 )q_0^2\) in the second summand of \(\pi '\) above.

References

  1. Arnold, V.I.: Ordinary Differential Equations. The MIT Press, Cambridge (1978). ISBN 0-262-51018-9

    Google Scholar 

  2. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNet-Gen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20(17), 3289–3291 (2004)

    Article  Google Scholar 

  3. Bonchi, F., Bonsangue, M.M., Boreale, M., Rutten, J.J.M.M., Silva, A.: A coalgebraic perspective on linear weighted automata. Inf. Comput. 211, 77–105 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boreale, M.: Weighted bisimulation in linear algebraic form. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 163–177. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-8_12

    Chapter  Google Scholar 

  5. Boreale, M.: Analysis of probabilistic systems via generating functions and Padé approximation. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 82–94. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_7. Full version available as DiSIA working paper 2016/10. http://local.disia.unifi.it/wp_disia/2016/wp_disia_2016_10.pdf

    Chapter  Google Scholar 

  6. Boreale, M.: Algebra, coalgebra, and minimization in polynomial differential equations. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 71–87. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7_5. Full version available as DiSIA working paper 2017/01. http://local.disia.unifi.it/wp_disia/2017/wp_disia_2017_01.pdf

    Chapter  Google Scholar 

  7. Boreale, M.: Complete algorithms for algebraic strongest postconditions and weakest preconditions in polynomial ODE’s. In: CoRR, abs/1708.05377. Full version of the present paper http://arxiv.org/abs/1708.05377 (2017)

  8. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. UTM. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16721-3

    Book  MATH  Google Scholar 

  9. Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential radical invariants. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 279–294. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_19. Extended version available from http://reports-archive.adm.cs.cmu.edu/anon/2013/CMU-CS-13-129.pdf

    Chapter  Google Scholar 

  10. Kong, H., Bogomolov, S., Schilling, C., Jiang, Y., Henzinger, T.A.: Safety verification of nonlinear hybrid systems based on invariant clusters. In: HSCC 2017, pp. 163–172. ACM (2017)

    Google Scholar 

  11. Liu, J., Zhan, N., Zhao, H.: Computing Semi-algebraic Invariants for Polynomial Dynamical Systems. In: EMSOFT, pp. 97–106. ACM (2011)

    Google Scholar 

  12. Müller-Olm, M., Seidl, H.: Computing polynomial program invariants. Inf. Process. Lett. 91(5), 233–244 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning 41(2), 143–189 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Platzer, A.: Logics of dynamical systems. In: LICS 2012, pp. 13–24. IEEE (2012)

    Google Scholar 

  15. Platzer, A.: The structure of differential invariants and differential cut elimination. Log. Methods Comput. Sci. 8(4), 1–38 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Rebiha, R., Moura, A.V., Matringe, N.: Generating invariants for non-linear hybrid systems. Theor. Comput. Sci. 594, 180–200 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation using Gröbner bases. In: POPL 2004, pp. 318–329. ACM (2004)

    Google Scholar 

  18. Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using ideal fixed points. In: HSCC 2010, pp. 221–230 (2010)

    Google Scholar 

  19. Sogokon, A., Ghorbal, K., Jackson, P.B., Platzer, A.: A method for invariant generation for polynomial continuous systems. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 268–288. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5_13

    Chapter  Google Scholar 

  20. Stengel, R.F.: Flight Dynamics. Princeton University Press, Princeton (2004)

    Google Scholar 

  21. Tiwari, A.: Approximate reachability for linear systems. In: HSCC 2003, pp. 514–525. ACM (2003)

    Google Scholar 

  22. Tiwari, A., Khanna, G.: Nonlinear systems: approximating reach sets. In: HSCC 2004, pp. 600-614. ACM (2004)

    Google Scholar 

  23. Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process algebra models. IEEE Trans. Softw. Eng. 38(1), 205–219 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Boreale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boreale, M. (2018). Complete Algorithms for Algebraic Strongest Postconditions and Weakest Preconditions in Polynomial ODE’S. In: Tjoa, A., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds) SOFSEM 2018: Theory and Practice of Computer Science. SOFSEM 2018. Lecture Notes in Computer Science(), vol 10706. Edizioni della Normale, Cham. https://doi.org/10.1007/978-3-319-73117-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73117-9_31

  • Published:

  • Publisher Name: Edizioni della Normale, Cham

  • Print ISBN: 978-3-319-73116-2

  • Online ISBN: 978-3-319-73117-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics