Skip to main content

Multi-objective Genetic Algorithm for Interior Lighting Design

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Big Data (MOD 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10710))

Included in the following conference series:

Abstract

This paper proposes a novel system to help in the design of interior lighting. It is based on multi-objective optimization of the key criteria involved in lighting design: the respect of a given target level of illuminance, uniformity of lighting, and electrical energy saving. The proposed solution integrates the 3D graphic software Blender, used to reproduce the architectural space and to simulate the effect of illumination, and the genetic algorithm NSGA-II. This solution offers advantages in design flexibility over previous related works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersen, M., Gagne, J.M., Kleindienst, S.: Interactive expert support for early stage full-year daylighting design: a user’s perspective on Lightsolve. Autom. Constr. 35, 338–352 (2013)

    Article  Google Scholar 

  2. Baltes, H. (ed.): Inverse Source Problems in Optics. Princeton University Press, Princeton (1978)

    MATH  Google Scholar 

  3. Caldas, L.: Generation of energy-efficient architecture solutions applying GENE_ARCH: an evolution-based generative design system. Adv. Eng. Inform. 22, 59–70 (2008)

    Article  Google Scholar 

  4. Caldas, L.: Painting with light: an interactive evolutionary system for daylighting design. Building and Environment (2016). https://doi.org/10.1016/j.buildenv.2016.07.023

    Article  Google Scholar 

  5. Cassol, F., Schneider, P.S., França, F.H., Neto, A.J.S.: Multi-objective optimization as a new approach to illumination design of interior spaces. Build. Environ. 46, 331–338 (2011)

    Article  Google Scholar 

  6. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: International Conference on Parallel Problem Solving From Nature, pp. 849–858 (2000)

    Google Scholar 

  7. Fesanghary, M., Asadi, S., Geem, Z.W.: Design of low-emission and energy-efficient residential buildings using a multi-objective optimization algorithm. Build. Environ. 49, 245–250 (2012)

    Article  Google Scholar 

  8. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Futrell, B., Ozelkan, E.C., Brentrup, D.: Optimizing complex building design for annual daylighting performance and evaluation of optimization algorithms. Energy Build. 92, 234–245 (2014)

    Article  Google Scholar 

  10. Gagne, J., Andersen, M.: A generative facade design method based on daylighting performance goals. J. Build. Performance Simul. 5, 141–154 (2012)

    Article  Google Scholar 

  11. Gordon, G.: Interior Lighting for Designers. Wiley, New York (2014)

    Google Scholar 

  12. Grasso, G., Plebe, A.: Conceptual integrity without concepts. In: International Conference on Software Engineering and Knowledge Engineering, pp. 422–427. KSI Research Inc. and Knowledge Systems Institute, Pittsburgh (PA) (2016)

    Google Scholar 

  13. Janikow, C.Z., Michalewicz, Z.: An experimental comparison of binary and floating point representations in genetic algorithms. In: Proceedings of the 4th International Conference on Genetic Algorithms, pp. 31–36 (1991)

    Google Scholar 

  14. Kawai, J., Painter, J.S., Cohen, M.F.: Radioptimization: goal based rendering. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 147–154 (1993)

    Google Scholar 

  15. Larson, G.W., Shakespeare, R.: Rendering with Radiance: The Art and Science of Lighting Visualization. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  16. Lee, K.S., Geem, Z.W.: A new structural optimization method based on the harmony search algorithm. Comput. Struct. 82, 781–798 (2004)

    Article  Google Scholar 

  17. Livingston, J.: Designing with Light: The Art, Science, and Practice of Architectural Lighting Design. John Wiley, New York (2015)

    Google Scholar 

  18. Madias, E.N.D., Kontaxis, P.A., Topalis, F.V.: Application of multi-objective genetic algorithms to interior lighting optimization. Energy Build. 125, 66–74 (2016)

    Article  Google Scholar 

  19. Moylan, K., Ross, B.J.: Interior illumination design using genetic programming. In: Johnson, C., Carballal, A., Correia, J. (eds.) EvoMUSART 2015. LNCS, vol. 9027, pp. 148–160. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16498-4_14

    Chapter  Google Scholar 

  20. Patow, G., Pueyo, X.: A survey of inverse rendering problems. Comput. Graphics Forum 22, 663–687 (2003)

    Article  Google Scholar 

  21. Plebe, A., Grasso, G.: Particle physics and polyedra proximity calculation for hazard simulations in large-scale industrial plants. In: American Institute of Physics Conference Proceedings, pp. 090003-1–090003-4 (2016)

    Google Scholar 

  22. Rapone, G., Saro, O.: Optimisation of curtain wall facades for office buildings by means of PSO algorithm. Energy Build. 45, 189–196 (2012)

    Article  Google Scholar 

  23. Sansoni, P., Farini, A., Mercatelli, L. (eds.): Sustainable Indoor Lighting. Springer, Berlin (2015). https://doi.org/10.1007/978-1-4471-6633-7

    Book  Google Scholar 

  24. Schoeneman, C., Dorsey, J., Smits, B., Arvo, J., Greenberg, D.: Painting with light. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 143–146 (1993)

    Google Scholar 

  25. Shea, K., Sedgwick, A., Antonuntto, G.: Multicriteria optimization of paneled building envelopes using ant colony optimization. In: Smith, I.F.C. (ed.) EG-ICE 2006. LNCS (LNAI), vol. 4200, pp. 627–636. Springer, Heidelberg (2006). https://doi.org/10.1007/11888598_56

    Chapter  Google Scholar 

  26. Turrin, M., von Buelow, P., Stouffs, R.: Design explorations of performance driven geometry in architectural design using parametric modeling and genetic algorithms. Adv. Eng. Inform. 25, 656–675 (2011)

    Article  Google Scholar 

  27. Villa, C., Labayrade, R.: Multi-objective optimisation of lighting installations taking into account user preferences - a pilot study. Lighting Res. Technol. 45, 176–196 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Plebe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Plebe, A., Pavone, M. (2018). Multi-objective Genetic Algorithm for Interior Lighting Design. In: Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R. (eds) Machine Learning, Optimization, and Big Data. MOD 2017. Lecture Notes in Computer Science(), vol 10710. Springer, Cham. https://doi.org/10.1007/978-3-319-72926-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72926-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72925-1

  • Online ISBN: 978-3-319-72926-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics