Skip to main content

Gravity Driven Flow Past the Bottom with Small Waviness

  • Conference paper
  • First Online:
Modern Problems in Applied Analysis

Part of the book series: Trends in Mathematics ((TM))

Abstract

We propose an introductory study of gravity driven Stokesian flow past the wavy bottom, based on Adler’s et al. papers. In examples the waviness is described by a sinus function and its amplitude is small, up to O(ε 2). A correction to Hagen-Poiseuille’s type free-flow solution is found. A contribution of capillary surface tension is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.A. Chechkin, A. Friedman, A.L. Piatnitski, The boundary-value problem in domains with very rapidly oscillating boundary. J. Math. Anal. Appl. 231(1), 213–234 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Czapla, V.V. Mityushev, W. Nawalaniec, Macroscopic Conductivity of Curvilinear Channels (Department of Computer Science and Computational Methods, Pedagogical University of Cracow, Kraków, 2017, preprint)

    Google Scholar 

  3. F.M. Esquivelzeta-Rabell, B. Figueroa-Espinoza, D. Legendre, P. Salles, A note on the onset of recirculation in a 2D Couette flow over a wavy bottom. Phys. Fluids 27(1), 014108-1–014108-14 (2015)

    Google Scholar 

  4. K. Evangelos, The impact of vegetation on the characteristics of the flow in an inclined open channel using the piv method. Water Resour. Ocean Sci. 1(1), 1–6 (2012)

    Article  Google Scholar 

  5. W. Huai, W. Wang, Y. Zeng, Two-layer model for open channel flow with submerged flexible vegetation. J. Hydraul. Res. 51(6), 708–718 (2013)

    Article  Google Scholar 

  6. E. Kubrak, J. Kubrak, P.M. Rowiński, Application of one-dimensional model to calculate water velocity distributions over elastic elements simulating Canadian waterweed plants (Elodea canadensis). Acta Geophys. 61(1), 194–210 (2013)

    Article  Google Scholar 

  7. L.D. Landau, E.M. Lifshitz, Fluid Mechanics. Course of Theoretical Physics (transl. from the Russian by J.B. Sykes, W.H. Reid), vol. 6, 2nd edn. (Pergamon Press, Oxford, 1987)

    Google Scholar 

  8. A.E. Malevich, V.V. Mityushev, P.M. Adler, Stokes flow through a channel with wavy walls. Acta Mech. 182(3–4), 151–182 (2006)

    Article  MATH  Google Scholar 

  9. A.E. Malevich, V.V. Mityushev, P.M. Adler, Couette flow in channels with wavy walls. Acta Mech. 197(3), 247–283 (2008)

    Article  MATH  Google Scholar 

  10. A.E. Malevich, V.V. Mityushev, P.M. Adler, Electrokinetic phenomena in wavy channels. J. Colloid Interface Sci. 345, 72–87 (2010)

    Article  Google Scholar 

  11. G. Sobin. Luminous Debris: Reflecting on Vestige in Provence and Languedoc (University of California Press, Berkeley, 2000)

    Google Scholar 

  12. R. Wojnar, W. Bielski, Flow in the canal with plants on the bottom. In Complex Analysis and Potential Theory with Applications. Proceedings of the 9th ISAAC Congress, August, 2013, Kraków, ed. by T.A. Azerogly, A. Golberg, S.V. Rogosin (Cambridge Scientific Publishers, Cambridge, 2014), pp. 167–183

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge many helpful suggestions from Professor Vladimir V. Mityushev.

This work was partially supported within statutory activities No 3841/E-41/S/2017 of the Ministry of Science and Higher Education of Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Bielski .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Natural Units for the Problem

Let the module of velocity of the main stream can be characterized by the quantity u, and the geometrical properties of the flow can be denoted by l. Then any flow is specified by three parameters u, l and the viscosity η. The only one dimensionless quantity which can be formed from the above three is called Reynolds’ number

$$\displaystyle \begin{aligned} R \equiv \frac{\rho}{\eta} \, u l{} \end{aligned} $$
(A.1)

Navier-Stokes’ equation is considerably simplified in the case of flow with small Reynolds number R. For steady flow of an incompressible fluid with constant viscosity η this equation reads

$$\displaystyle \begin{aligned} (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} = \, - \, \frac{1}{\rho} \, \nabla p \, + \, \boldsymbol{b} \, + \, \frac{\eta}{\rho} \, \Delta \boldsymbol{v} \end{aligned} $$
(A.2)

The term (v ⋅∇)v is of the order of magnitude of (u 2/l), and the quantity (η/ρ) Δv is of the order of ηu/(ρl 2). The ratio of two is just Reynolds’ number R. Hence the term (v ⋅∇)v may be neglected for small R. Then the equation of motion reduces to a linear equation

$$\displaystyle \begin{aligned} \eta \, \Delta \boldsymbol{v} \, - \, \nabla p + \, \boldsymbol{b} \, = 0 \end{aligned} $$
(A.3)

known as Stokes’ equation, which together with the equation of continuity (1) and appropriate boundary conditions completely determines the motion, [7].

We notice yet that the smallness of R is not necessary to linearize Stokes’ equation in the case of laminar flow with the velocity v = (v, 0, 0), if v does not depend on x 1. In this case the nonlinear term at the left hand side of Eq. (A.2) identically vanishes.

In analogy with Reynolds’ number R, we take as a natural for this problem the depth h of the fluid as the unit of length x̆. As the unit of velocity v̆ we accept three times repeated the mean velocity 3 ⋅ v mean. The natural unit of pressure p̆ is the x component of the hydrostatic pressure at the bottom, what assures the unit value of the x component of the body force. Thus, cf. Fig. 1,

$$\displaystyle \begin{aligned} \begin{array}{l} \displaystyle \breve{x} = h \\ \displaystyle \breve{v} = 3 \cdot v^{\mathrm{mean}} \, = \,\frac{\rho}{\eta} \, h^2 \,g \,\sin \alpha \\ \displaystyle \breve{p} = \,\frac{\eta}{h} \,3 \, v^{\mathrm{mean}} = \rho h g \sin \alpha \end{array} \end{aligned} $$
(A.4)

Consequently, the unit of time is

$$\displaystyle \begin{aligned} \breve{t} = \frac{\breve{x}}{\breve{v}} \, = \, \frac{h}{3 \cdot v^{\mathrm{mean}}} \, = \, \frac{\eta}{\rho h g \sin \alpha} \end{aligned} $$
(A.5)

Then new variables \(\widetilde x, \widetilde v\) and \(\widetilde p\) are introduced:

$$\displaystyle \begin{aligned} \widetilde x \, \equiv \, \frac{x}{\breve{x}}, \quad \widetilde v \, \equiv \, \frac{v}{\breve{v}} \quad \mathrm{and} \quad \widetilde p \, \equiv \, \frac{p}{\breve{p}} \end{aligned} $$
(A.6)

In the new variables the zeroth approximation of Stokes’ equation has the form

$$\displaystyle \begin{aligned} \frac{\partial^2 \widetilde v}{\partial \widetilde y^2} - \frac{\partial \widetilde p}{\partial \widetilde x} + 1 = 0 \qquad \mathrm{and} \qquad \frac{\partial \widetilde p}{\partial \widetilde y} + \mathrm{ctg} \alpha = 0 \end{aligned}$$

cf. Eqs. (1.5).

We take into consideration a typical laboratory experiment with h = 10 cm. If we approximate the gravity acceleration g as 1000 cm/s2, then for the water with the density ρ = 1 g/cm3 the relation between the natural units and the SI units is

$$\displaystyle \begin{aligned} \begin{array}{l} \displaystyle \breve{x} = 10\,\mathrm{cm} \\ \displaystyle \breve{v} = \frac{1 \,\frac{\mathrm{g}}{\mathrm{cm}^3}}{0.01 \, \frac{\mathrm{g}}{\text{cm s}}} \cdot \frac{10^2\,\mathrm{cm}^2}{3} \cdot 1000 \frac{\mathrm{cm}}{\mathrm{s}^2} \cdot \sin \alpha \, = \, \frac{10}{3} \cdot 10^6 \cdot \frac{\mathrm{cm}}{\mathrm{s}} \cdot \sin \alpha \\ \displaystyle \breve{p} = 1 \frac{\mathrm{g}}{\mathrm{cm}^3} \cdot 10\,\mathrm{cm} \cdot 1000 \frac{\mathrm{cm}}{\mathrm{s}^2} \cdot \sin \alpha = 10^4 \frac{\text{g cm}}{\mathrm{s}^2} \cdot \frac{1}{\mathrm{cm}^2} \cdot \sin \alpha \\ \displaystyle \breve{t} = \, \frac{ 0.01 \cdot \frac{\mathrm{g}}{\text{cm s}}} { 1 \frac{\mathrm{g}}{\mathrm{cm}^3} \cdot 10\,\mathrm{cm} \cdot 1000 \frac{\text{g cm}}{\mathrm{s}^2} \cdot \sin \alpha } = \, \frac{ 10^{- 6} \mathrm{s}}{\sin \alpha} \end{array} \end{aligned} $$
(A.7)

In peculiar, we have also

$$\displaystyle \begin{aligned} 1 \cdot \frac{\text{g cm}}{\mathrm{s}^2} \cdot \frac{1}{\mathrm{cm}^2} \, = \, \breve{p} \cdot \frac{10^{- 4}}{\sin \alpha} \end{aligned}$$

and

$$\displaystyle \begin{aligned} 1 s \, = \, \breve{t} \cdot 10^6 \cdot \sin \alpha \end{aligned}$$

Then, the viscosity of the water in these new units is equal to one

$$\displaystyle \begin{aligned} \eta^{\mathrm{H}_2\mathrm{O}} \, = \, 0.01 \cdot \frac{\mathrm{g}}{\text{cm s}} \, = \, 0.01 \cdot \frac{1}{\mathrm{cm}^{2}} \,\frac{\text{g cm}}{\mathrm{s}^2} \cdot s \, = \, 1 \cdot \breve{p} \cdot \breve{t} {} \end{aligned} $$
(A.8)

In our example we accept

$$\displaystyle \begin{aligned} \alpha = \frac{100\,\mathrm{m}}{1000\,\mathrm{km}} = 10^{- 4} \end{aligned} $$
(A.9)

what is an order of the mean slope of the great world rivers profile, cf. the Appendix 3. Then

$$\displaystyle \begin{aligned} \begin{array}{l} \displaystyle \breve{x} = 10\,\mathrm{cm} \\ \displaystyle \breve{v} = \,10 \cdot 10^2 \cdot \frac{\mathrm{cm}}{\mathrm{s}} \/ = \, 10 \cdot \frac{\mathrm{m}}{\mathrm{s}} \\ \displaystyle \breve{p} = \, 1 \cdot \frac{\text{g cm}}{\mathrm{s}^2} \cdot \frac{1}{\mathrm{cm}^2} \\ \displaystyle \breve{t} = \, 0.01 \, \mathrm{s} \end{array} \end{aligned} $$
(A.10)

In these units, we find

$$\displaystyle \begin{aligned} \breve{x} \cdot \frac{\breve{p}}{\breve{v}} = \frac{1}{100} \cdot \frac{\mathrm{g}}{\text{cm s}} \end{aligned}$$

or

$$\displaystyle \begin{aligned} 1\,\mathrm{P} \, \equiv \, 1 \cdot \frac{\mathrm{g}}{\text{cm s}} \, = \, 100 \cdot \breve{x} \cdot \frac{\breve{p}}{\breve{v}}\end{aligned} $$

It is conspicuous for this angle of slope the smallness of the pressure unit. Note that p̆ = 1 dyn/cm2 = 0.1 Pa ≈ 10−6 atm.

As it was mentioned above, the viscosity of water at 20C is almost exactly 1 cP, and equals 1 in our natural units, cf. Eq. (A.8).

Appendix 2: Elaboration of the Example

1.1 General Solution

By equation (2.7) for m = 1 we have

$$\displaystyle \begin{aligned} \begin{array}{l} \displaystyle u_1(x, y)= \alpha_1(y) \, (A \, \cos x \, - \, B \, \sin x) \\ \displaystyle v_1(x, y)= \beta_1(y) \, (A \, \sin x \, + \, B \, \cos x) \\ p_1(x, y)= \gamma_1(y) \, (A \, \sin x \, + \, B \, \cos x) \end{array}{} \end{aligned} $$
(A.11)

where α 1, β 1, and γ 1 are given by Eqs. (3.8)–(3.10) and the superscripts 1 were omitted. After Eqs. (3.7) we find

$$\displaystyle \begin{aligned} \begin{array}{l} \displaystyle u_{11} \, = \, -\left\{ [C_1 + (C_1 y + C_2) ] \, \mathrm{e}^{y} \, + \, [C_3 - (C_3 y + C_4 ] \,\mathrm{e}^{- y} \right\}B \\ \displaystyle u_{12} \, = \,\left\{ [C_1 + (C_1 y + C_2) ] \, \mathrm{e}^{y} \, + \, [C_3 - (C_3 y + C_4 ] \,\mathrm{e}^{- y} \right\}A \\ \displaystyle v_{11}=\left\{ (C_1 y + C_2)\, \mathrm{e}^{y} \, + \, (C_3 y + C_4)\, \mathrm{e}^{- y} \right\}A \\ v_{12}=\left\{ (C_1 y + C_2)\, \mathrm{e}^{y} \, + \, (C_3 y + C_4)\, \mathrm{e}^{- y} \right\}B \\ p_{11}= (2 C_1 \, \mathrm{e}^{y} \, + \, 2 C_3 \,\mathrm{e}^{- y})A,\qquad p_{12}= (2 C_1 \, \mathrm{e}^{y} \, + \, 2 C_3 \,\mathrm{e}^{- y})B \end{array}{} \end{aligned} $$
(A.12)

1.2 Boundary Conditions for the Example

If the expansions (2.4) are limited up to O(ε 2), only the terms with m = 0, 1 must be left, and the boundary conditions (2.5) reduce to the following ones

$$\displaystyle \begin{aligned} \begin{array}{l} \displaystyle u(x, \varepsilon a \cos x) \doteq u_0(x, 0) + \varepsilon \left( u_1(x, 0) + a \cos x \cdot \left. \frac{\partial u_0(x,y)}{\partial y}\right|{}_{y=0} \right) \\ \displaystyle v(x, \varepsilon a \cos x) \doteq v_0(x, 0) + \varepsilon \left(v_1(x, 0) + a \cos x \cdot \left. \frac{\partial v_0(x,y)}{\partial y}\right|{}_{y=0} \right) \\ \displaystyle p(x, \varepsilon a \cos x) \doteq p_0(x, 0) + \varepsilon \left(p_1(x, 0) + a \cos x \cdot \left. \frac{\partial p_0(x,y)}{\partial y}\right|{}_{y=0} \right) \end{array}{} \end{aligned} $$
(A.13)

where ≐ means the asymptotic equality with the accuracy O(ε 2). This symbol was applied in [2].

Next, we submit Fourier’s series (2.7) into Maclaurin’s expansions (2.5), taken at the bottom boundary up to O(ε 2) approximation, and receive

$$\displaystyle \begin{aligned} \begin{array}{l} \displaystyle u(x, \varepsilon \,a \, \cos x) \, \doteq \, u_0(x,0) \, + \, \\ \displaystyle \varepsilon \, \left( \left. \alpha_1(y)\right|{}_{y=0} \, \frac{\partial}{\partial x} \, (A \, \sin x \, + \, B \, \cos x) \right) \\ \displaystyle v(x, \varepsilon \,a \, \cos x) \, \doteq \, v_0(x,0) \, + \, \\ \displaystyle \varepsilon \, \left( \left. \beta_1^{(1)}(y)\right|{}_{y=0} \, (A \, \sin x \, + \, B \, \cos x) \right) \\ \displaystyle p(x, \varepsilon \,a \, \cos x) \, \doteq \, p_0(x,0) \, + \\ \displaystyle \varepsilon \, \left( \left. \gamma_1^{(1)}(y)\right|{}_{y=0} \, (A \, \sin x \, + \, B \, \cos x) \right) \end{array}{} \end{aligned} $$
(A.14)

The subscripts and coefficients at x are put s = 1. Above, u 0(x, 0) and v 0(x, 0) are known and equal to zero, while p 0(x, 0) must be found from a boundary problem at the free surface of the flowing stream.

From the solutions (2.12)–(2.13) we get

$$\displaystyle \begin{aligned} \begin{array}{ll} \displaystyle \left.\alpha_1^{(1)}(y)\right|{}_{y=0} & = \, C_1 + \, C_2 \, + \, C_3 - \, C_4 \\ \displaystyle \left.\beta_1^{(1)}(y)\right|{}_{y=0} & = \, C_2 \, + \, C_4 \\ \displaystyle \left. \frac{\partial}{\partial y} \, \beta_1^{(1)}(y)\right|{}_{y=0} & = \, C_1 + C_2 \, + \, C_3 - C_4 \\ \displaystyle \left.\gamma_1^{(1)}(y)\right|{}_{y=0} & = \, 2 \,( C_1 \, + \, C_3 ) \\ \displaystyle \left. \frac{\partial}{\partial y} \, \gamma_1^{(1)}(y)\right|{}_{y=0} & = \,2 \, C_1 \, - \, 2 \, C_3 \end{array}{} \end{aligned} $$
(A.15)

Here also the superscripts at the coefficients C 1, C 2, C 3 and C 4 were omitted. Substituting (A.13) into (A.12) gives

$$\displaystyle \begin{aligned} \begin{array}{l} \displaystyle u(x, \varepsilon \,a \, \cos x) \, \doteq \, \\ \displaystyle \varepsilon \, \left\{ (C_1 + \, C_2 \, + \, C_3 - \, C_4 ) (A \, \cos x - B \, \sin x) \, + \, \cos x \right\} \\ \displaystyle v(x, \varepsilon \,a \, \cos x) \, \doteq \displaystyle \varepsilon \, (C_2 + C_4) \, (A \, \sin x \, + \, B \, \cos x) \\ \displaystyle p(x, \varepsilon \,a \, \cos x) \, \doteq \, p_0(x,0) \, + \varepsilon \, 2 \,( C_1 \, + \, C_3 ) \, (A \, \sin x \, + \, B \, \cos x) \end{array}{} \end{aligned} $$
(A.16)

1.3 Finding Constants

At the bottom

$$\displaystyle \begin{aligned} u(x, \varepsilon \,a \, \cos x) \, = \, 0 \end{aligned} $$
(A.17)

and

$$\displaystyle \begin{aligned} v(x, \varepsilon \,a \, \cos x) \,= \, 0 \end{aligned} $$
(A.18)

where both \(u(x, \varepsilon \,a \, \cos x) \) and \(v(x, \varepsilon \,a \, \cos x) \) are given by (A.16). Also, in good approximation (if surface undulations were neglected)

$$\displaystyle \begin{aligned} p(x, \varepsilon \,a \, \cos x) \,= \, p_{\mathrm{A}} \, + \, \mathrm{ctg} \, \alpha \end{aligned} $$
(A.19)

These conditions should be satisfied separately at each power of ε. We apply the integral relations

$$\displaystyle \begin{aligned} \int_{- \pi}^\pi \cos k x \sin l x \mathrm{d} x \, = \,0 \quad \mathrm{and} \quad \int_{- \pi}^\pi \cos k x \cos l x \mathrm{d} x \, = \, \pi \, \delta_{k l} \end{aligned}$$

and successively obtain.

From Eqs. (A.14) and (A.15)

$$\displaystyle \begin{aligned} (C_1 + \, C_2 \, + \, C_3 - \, C_4 ) \, A \, = \, - \, 1 \end{aligned} $$
(A.20)

and

$$\displaystyle \begin{aligned} B = 0 \end{aligned} $$
(A.21)

From Eqs. (A.14) and (A.16)

$$\displaystyle \begin{aligned} C_2 + C_4 = 0{} \end{aligned} $$
(A.22)

After the set (3.2) and Eq. (1.9) we have

$$\displaystyle \begin{aligned} p=p_{\mathrm{A}} +(1-y)\,\mathrm{ctg}\alpha+2\varepsilon(C_1\mathrm{e}^y+C_3\mathrm{e}^{-y})A\sin x{} \end{aligned} $$
(A.23)

To assure the value p = p A at y = 1 we should have

$$\displaystyle \begin{aligned} C_1\mathrm{e}+C_3\mathrm{e}^{-1}=0{} \end{aligned} $$
(A.24)

If we assume that transversal velocity component v vanishes at the stream surface (y = 1)

$$\displaystyle \begin{aligned} (C_1+C_2)\mathrm{e}+(C_3+C_4)\mathrm{e}^{-1}=0{} \end{aligned} $$
(A.25)

Comparing (A.22), (A.24) and (A.25) we observed that

$$\displaystyle \begin{aligned} C_2=0=C_4 \end{aligned} $$
(A.26)

Moreover,

$$\displaystyle \begin{aligned} AC_1=\frac{\mbox{e}^2}{\mbox{e}^2-1} \qquad {\mathrm{{and}}}\quad AC_3=\frac{1}{\mbox{e}^2-1}\end{aligned} $$
(A.27)

Appendix 3: Slopes of the River Beds: Typical Examples

What concerns the lower Nile river, the city Aswan is elevated 194 m above the sea level, and from this town to the Mediterranean sea the river flows about 1200 km yet.

What concerns the lower Amazon river, the city Manaus is on 92 m elevation and 1500 km away from the Atlantic ocean. In approximation the mean slope of the Amazon profile is

$$\displaystyle \begin{aligned} \alpha \approx \frac{60\,\mathrm{m}}{ 1500\,\mathrm{km}} \, = \,0.4 \times 10^{- 4}\end{aligned} $$

The similar numbers are obtained for other rivers such as Volga, Oka, Mississippi and Wisła (Vistula) below Warsaw. The mean slope of the Wisłok river below Rzeszów until the mouth in Dȩbno is about 14 m / 60 km ≈ 2 × 10−4.

For comparison, the slope of the bridge Pont du Gard, which descends 2.5 cm in 456 m has the approximate value of the gradient 0.5 × 10−4. The bridge is part of the Nîmes aqueduct. The aqueduct was built probably around the reign of the emperor Claudius (41–54 AD). It required constant maintenance by circitores, workers responsible for the aqueduct’s upkeep, who crawled along the conduit scrubbing the walls clean and removing any vegetation, cf. [11].

Appendix 4: Estimation of the Upper Waviness

After the formula for differentiation of a definite integral whose limits are functions of the differential variable, Eq. (4.1) can be written in the form

$$\displaystyle \begin{aligned} I_1 + I_2 + I_3 = 0\end{aligned} $$
(A.28)

Here

$$\displaystyle \begin{aligned} \begin{array}{l} \displaystyle I_1 = \, - \, \int_{\varepsilon \cos x}^{1 + \zeta(x)} \{ - \mathrm{e}^2 \mathrm{e}^{- y} \, + \, \mathrm{e}^y \, + \, \mathrm{e}^2 \, \mathrm{e}^{- y} y \, + \, \mathrm{e}^ y y\} \, \sin x \,\mathrm{d} y \\ \displaystyle I_2 = \frac{\partial \zeta}{\partial x} \, \{ - \mathrm{e}^2 \mathrm{e}^{- (1 + \zeta)} \, + \, \mathrm{e}^{1 + \zeta} \, + \, \mathrm{e}^2 \, \mathrm{e}^{- (1 + \zeta)} (1 + \zeta) \, + \, \mathrm{e}^{1 + \zeta} (1 + \zeta) \} \, \cos x \\ \displaystyle I_3 = \, - \, \varepsilon \sin x \, \{ - \mathrm{e}^2 \mathrm{e}^{- \varepsilon \cos x} \, + \, \mathrm{e}^{\varepsilon \cos x} \, + \, \mathrm{e}^2 \, \mathrm{e}^{- (\varepsilon \cos x)} (\varepsilon \cos x) \\ +\, \displaystyle \mathrm{e}^{\varepsilon \cos x}(\varepsilon \cos x) \} \, \cos x \end{array} \end{aligned}$$

After integration we get

$$\displaystyle \begin{aligned} I_1 = \, - \,\left. \left\{ \mathrm{e}^2 \mathrm{e}^{- y} \, + \, \mathrm{e}^y \, -\, \mathrm{e}^2 \, \mathrm{e}^{- y} (y +1) \, + \, \mathrm{e}^ y(y -1) \right\}\right|{}_{\varepsilon \cos x}^{1 + \zeta(x)} \, \cdot \, \sin x\end{aligned} $$

or

$$\displaystyle \begin{aligned} I_1 = \, - \, \left\{ \mathrm{e} \cdot 2 \, \zeta \, ( 1 + \zeta) \, + \, [ \mathrm{e}^2 - 1 - ( \mathrm{e}^2 + 1) \, \varepsilon \cos x ] \, \varepsilon \cos x \right\} \cdot \,\sin x\end{aligned} $$

Keeping the terms of O(ε) and O(ζ) only we have

$$\displaystyle \begin{aligned} I_1 = \, - \, \left\{ 2 \mathrm{e} \zeta \, \, + \, ( \mathrm{e}^2 - 1 ) \, \varepsilon \cos x \right\} \cdot \,\sin x \end{aligned}$$

Within this accuracy we get

$$\displaystyle \begin{aligned} I_2 = \frac{\mathrm{d} \zeta}{\mathrm{d} x} \cdot \mathrm{e} \cdot (3 + 2 \zeta) \, \cos x \end{aligned}$$

and

$$\displaystyle \begin{aligned} I_3 = \, - \, \varepsilon \sin x \cdot (1 - \mathrm{e}^2 ) \, \cos x\end{aligned} $$

If we leave out the term I 1, we have equality I 2 + I 3 = 0, which, after integration gives \( 3 \zeta + \zeta ^2 = \varepsilon \cdot \left ( \mathrm {e} \, - \, {1}/{\mathrm {e}} \right ) \cos x, \) and after linearization

$$\displaystyle \begin{aligned} \zeta = \frac{ \varepsilon}{3} \cdot \left( \mathrm{e} \, - \, \frac{1}{\mathrm{e}} \right) \cos x \end{aligned}$$

where e ≈ 2.71828. In this case O(ζ)≃ O(ε).

Appendix 5: Young-Laplace’s Equation

Young-Laplace’s equation is a statement of normal stress balance for static fluids meeting at an interface

$$\displaystyle \begin{aligned}p_1 - p_2 = \sigma \left({\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}\right) \end{aligned}$$

where p 1 − p 2 is the pressure difference across the fluid interface, σ is the surface tension, and R 1 and R 2 are the principal radii of the interface surface curvature. In our case p 1 = p is the pressure inside of the liquid, and p 2 = p A is the atmospheric pressure. Young-Laplace’s equation can be written as

$$\displaystyle \begin{aligned} \frac{p_1}{\breve p } - \frac{ p_2}{\breve p} = \frac{\sigma}{ {\breve p} h} \, \left({\frac {h}{R_{1}}}+{\frac {h}{R_{2}}}\right) \end{aligned}$$

The value of surface tension of water against air σ = 72.5 g/s2, and in our natural units, cf. the Appendix 1,

$$\displaystyle \begin{aligned} \widetilde \sigma = \frac{\sigma}{ {\breve p} h} = \frac{72.5}{10^5 \cdot \sin \alpha} \approx 7.25 \end{aligned}$$

For the droplet of radius 1 mm, p − p A = 0.0014 atm, and for the droplet of radius 0.1 mm, p − p A = 0.0144 atm, with p meaning the pressure inside of the liquid, and p A is the atmospheric pressure.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wojnar, R., Bielski, W. (2018). Gravity Driven Flow Past the Bottom with Small Waviness. In: Drygaś, P., Rogosin, S. (eds) Modern Problems in Applied Analysis. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-72640-3_13

Download citation

Publish with us

Policies and ethics