Skip to main content

Cytotoxicity and Physiological Effects of Silver Nanoparticles on Marine Invertebrates

  • Chapter
  • First Online:
Cellular and Molecular Toxicology of Nanoparticles

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1048))

Abstract

Silver nanoparticles (AgNPs) incorporation in commercial products is increasing due to their remarkable physical and chemical properties and their low cost on the market. Silver has been known for a long time to be highly toxic to bacterial communities, aquatic organisms, and particularly to marine biota. Strong chloro-complexes dominate Ag speciation in seawater and facilitate its persistence in dissolved form. It has a great impact on marine organisms because low concentration of silver can lead to strong bioaccumulation, partly because the neutral silver chloro complex (AgCl0) is highly bioavailable. Owing to the fact that estuaries and coastal areas are considered as the ultimate fate for AgNPs, the study of their toxic effects on marine invertebrates can reveal some environmental risks related to nanosilver exposure. In an attempt to reach this goal, many invertebrate taxa including mollusks, crustaceans, echinoderms and polychaetes have been used as biological models. The main findings related to AgNP toxicity and marine invertebrates are summarized hereafter. Some cellular mechanisms involving nano-internalization (cellular uptake, distribution and elimination), DNA damaging, antioxidant cellular defenses and protein expression are discussed. Physiological effects on early stage development, silver metabolic speciation, immune response, tissue damaging, anti-oxidant effects and nano-depuration are also described. Finally, we paid attention to some recent interesting findings using sea urchin developmental stages and their cells as models for nanotoxicity investigation. Cellular and physiological processes characterizing sea urchin development revealed new and multiple toxicity mechanisms of both soluble and nano forms of silver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wijnhoven SWP, Peijnenburg W, Herberts CA et al (2009) Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3(2):109–138

    Article  CAS  Google Scholar 

  2. Geranio L, Heuberger M, Nowack B et al (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43:8113–8118

    Article  CAS  PubMed  Google Scholar 

  3. Kaegi R, Voegelin A, Sinnet B et al (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 49(9):3902–3908

    Article  Google Scholar 

  4. Quadros ME, Marr LC (2011) Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products. Environ Sci Technol 45(24):10713–10719

    Article  CAS  PubMed  Google Scholar 

  5. Angel BM, Batley GE, Jarolimek CV et al (2013) The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere 93(2):359–365

    Article  CAS  PubMed  Google Scholar 

  6. Kaegi R, Voegelin A, Ort C et al (2013) Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res 47(12):3866–3877

    Article  CAS  PubMed  Google Scholar 

  7. Fabrega J, Luoma SN, Tyler CR et al (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–531

    Article  CAS  PubMed  Google Scholar 

  8. Luoma SN, Ho YB, Bryan GW et al (1995) Fate, bioavailability and toxicity of silver in estuarine environments. Mar Pollut Bull 31(1–3):44–54

    Article  CAS  Google Scholar 

  9. Pelletier É et al (2015) The fate of nanomaterials at the river/ocean frontier using large mesocosms: the case story of silver nanoparticles. In: SETAC Europa 25th annual meeting, Barcelona

    Google Scholar 

  10. Metaxas A, Young CM (1998) Behaviour of echinoid larvae around sharp haloclines: effects of the salinity gradient and dietary conditioning. Mar Biol 131:443–459

    Article  CAS  Google Scholar 

  11. Wang H, Ho KT, Scheckel KG et al (2014) Toxicity, bioaccumulation, and biotransformation of silver nanoparticles in marine organisms. Environ Sci Technol 48:13711–13717

    Article  CAS  PubMed  Google Scholar 

  12. Deycard VN, Schäfer J, Petit JC et al (2017) Imputs, dynamics and potential impacts of silver (Ag) from urban wastewater to a highly turbid estuary (SW France). Chemosphere 167:501–511

    Article  CAS  PubMed  Google Scholar 

  13. Sanudo-Wllhelmy SA, Flegal AR (1992) Anthropogenic silver in the Southern California bight: a new tracer of sewage in coastal waters. Environ Sci Technol 26:2147–2151

    Article  Google Scholar 

  14. Ranville MA, Flegal AR (2005) Silver in the North Pacific Ocean. Geochem Geophys 6:Q03M01

    Google Scholar 

  15. Gallon C, Flegal AR (2015) Sources, fluxes and biogeochemical cycling of silver in the oceans. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, v. 235. Springer, Cham

    Google Scholar 

  16. Cunliffe M, Engel A, Sanja F et al (2012) Review: sea surface microlayers – a unified physicochemical and biological perspective of the air-ocean interface. Prog Oceanogr 109:104–116

    Article  Google Scholar 

  17. Wurl O, Obbard JP (2004) A review of pollutants in the sea-surface microlayer (SML): a unique habitat for marine organisms. Mar Pollut Bull 48(11–12):1016–1030

    Article  CAS  PubMed  Google Scholar 

  18. Cunliffe M et al (2013) Sea surface microlayers: a unified physicochemical and biological perspective of the air-ocean interface. Prog Oceanogr 109:104–116

    Article  Google Scholar 

  19. Soloviev A, Lukas R (2014) The near-surface layer of ocean: structure, dynamics and applications. Springer, Dordrecht. 552 pages

    Book  Google Scholar 

  20. McShan et al (2014) Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22:116–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64(2):129–137

    Article  CAS  PubMed  Google Scholar 

  22. Hsiao IL et al (2015) Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis. Environ Sci Technol 49:3813–3821

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y et al (2015) An overview on nanotoxicity and nanomedicine research: principles, progress and implications on cancer therapy. J Mater Chem B 3:7153–7172

    Article  CAS  Google Scholar 

  24. Comfort KK et al (2014) Less is more: long-term in vitro exposure to low levels of silver nanoparticles provides new insights for nanomaterial evaluation. ACS Nano 4:3260–3271

    Article  Google Scholar 

  25. Ringwood AH et al (2010) The effects of silver nanoparticles on oysters embryos. Mar Environ Res 69:S49–S51

    Article  CAS  PubMed  Google Scholar 

  26. Zuykov M et al (2011) Colloidal complexed silver and silver nanoparticles in extrapallial fluid of Mytilus edulis. Mar Environ Res 71:17–21

    Article  CAS  PubMed  Google Scholar 

  27. Falugi C et al (2012) Toxicity of metal oxide nanoparticles in immune cells of the sea urchin. Mar Environ Res 76:114–121

    Article  CAS  PubMed  Google Scholar 

  28. Abbott Chalew TE et al (2012) Pilot study on effects of nanoparticle exposure on Crassostrea virginica hemocyte phagocytosis. Mar Pollut Bull 64:2251–2253

    Article  CAS  PubMed  Google Scholar 

  29. Piticharoenphun S et al (2012) Agglomeration of silver nanoparticles in sea urchin. Int J Environ Pollut Remed 1:44–50

    CAS  Google Scholar 

  30. Li H et al (2013) Accumulation of aqueous and nanoparticulate silver by the marine gastropod Littorina littorea. Water Air Soil Pollut 224:1354

    Google Scholar 

  31. McCarthy M et al (2013) Tissue specific responses of oysters, Crassostrea virginica, to silver nanoparticles. Aquat Toxicol 138–139:123–128

    Article  PubMed  Google Scholar 

  32. Gambardella C et al (2013) Developmental abnormalities and changes in cholinesterase activity in sea urchin embryos and larvae from sperm exposed to engineered nanoparticles. Aquat Toxicol 130–131:77–85

    Article  PubMed  Google Scholar 

  33. Šiller L et al (2013) Silver nanoparticle toxicity in sea urchin Paracentrotus lividus. Environ Pollut 178:498–502

    Article  PubMed  Google Scholar 

  34. Al-Sid-Cheikh M et al (2013) Tissue distribution and kinetics of dissolved and nanoparticulate silver in Iceland scallop (Chlamys islandica). Mar Environ Res 86:21–28

    Article  CAS  PubMed  Google Scholar 

  35. Marques BF et al (2013) Toxicological effects induced by the nanomaterials fullerene and nanosilver in the Polychaeta laeonereis acuta (Nereididae) and in the bacteria communities living at their surface. Mar Environ Res 89:53–62

    Article  CAS  PubMed  Google Scholar 

  36. Arulvasu C et al (2014) Toxicity effect of silver nanoparticles in brine shrimp Artemia. Sci World J 2014:10. Article ID 256919

    Article  Google Scholar 

  37. García-Alonso J et al (2014) Toxicity and accumulation of silver nanoparticles during development of the marine polychaete Platynereis dumerilii. Sci Total Environ 476–477:688–695

    Article  PubMed  Google Scholar 

  38. Gambardella C et al (2015) Effect of silver nanoparticles on marine organisms belonging to different trophic levels. Mar Environ Res 111:41–49

    Article  CAS  PubMed  Google Scholar 

  39. Burić P et al (2015) Effect of silver nanoparticles on Mediterranean sea urchin embryonal development is species specific and depends on moment of first exposure. Mar Environ Res 111:50–59

    Article  PubMed  Google Scholar 

  40. Gambardella C et al (2015) Exposure of Paracentrotus lividus male gametes to engineered nanoparticles affects skeletal bio-mineralization processes and larval plasticity. Aquat Toxicol 158:181–191

    Article  CAS  PubMed  Google Scholar 

  41. Katsumiti A et al (2015) Mechanisms of toxicity of Ag nanoparticles in comparison to bulk and ionic Ag on mussel hemocytes and gill cells. Plos One 10:1–30

    Article  Google Scholar 

  42. Magesky A, Pelletier É (2015) Toxicity mechanisms of ionic silver and polymer-coated silver nanoparticles with interactions of functionalized carbon nanotubes on early development stages of sea urchin. Aquat Toxicol 167:106–123

    Article  CAS  PubMed  Google Scholar 

  43. Magesky A et al (2017) Silver nanoparticles and dissolved silver activate contrasting immune responses and stress-induced heat shock protein expression in sea urchin. Environ Toxicol Chem 36(7):1872–1886

    Article  CAS  PubMed  Google Scholar 

  44. Gomes T et al (2013) Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis. Mar Environ Res 84:51–59

    Article  CAS  PubMed  Google Scholar 

  45. Gomes T et al (2014) Effects of silver nanoparticles exposure in the mussel Mytilus galloprovincialis. Mar Environ Res 101:208–214

    Article  CAS  PubMed  Google Scholar 

  46. Bebianno M et al (2015) Is gene transcription in mussel gills altered after exposure to Ag nanoparticles? Environ Sci Pollut Res Int 22:17425–17433

    Article  CAS  PubMed  Google Scholar 

  47. Dai L et al (2013) Effects, uptake, and depuration kinetics of silver oxide and cooper oxide nanoparticles in a marine deposit feeder, Macoma balthica. Environ Sci Technol 1:760–767

    CAS  Google Scholar 

  48. McGreer ER (1979) Sublethal effects of heavy metal contaminated sediments on the bivalve Macoma balthica (L.) Mar Pollut Bull 10:259–262

    Article  CAS  Google Scholar 

  49. Cong Y et al (2014) Toxicity and bioaccumulation of sediment-associated silver nanoparticles in the estuarine polychaete, Nereis (Hediste) diversicolor. Aquat Toxicol 156:106–115

    Article  CAS  PubMed  Google Scholar 

  50. García-Alonso J et al (2011) Cellular internalization of silver nanoparticles in gut epithelia of the estuarine polychaete Nereis diversicolor. Environ Sci Technol 45:4630–4636

    Article  PubMed  Google Scholar 

  51. Cozzari M et al (2015) Bioaccumulation and oxidative stress responses measured in the estuarine ragworm (Nereis diversicolor) exposed to dissolved, nano- and bulk-sized silver. Environ Pollut 198:32–40

    Article  CAS  PubMed  Google Scholar 

  52. Cong Y et al (2011) Toxic effects and bioaccumulation of nano-, micron- and ionic-Ag in the polychaete, Nereis diversicolor. Aquat Toxicol 105:403–411

    Article  CAS  PubMed  Google Scholar 

  53. Khan FR et al (2012) Bioaccumulation dynamics and modeling in an estuarine invertebrate following aqueous exposure to nanosized and dissolved silver. Environ Sci Technol 46:7621–7628

    Article  CAS  PubMed  Google Scholar 

  54. Gomes T et al (2013) Differential protein expression in mussels Mytilus galloprovincialis exposed to nano and ionic Ag. Aquat Toxicol 136–137:79–90

    Article  PubMed  Google Scholar 

  55. Buffet P-E et al (2013) Biochemical and behavioural responses of the endobenthic bivalve Scrobicularia plana to silver nanoparticles in seawater and microalgal food. Ecotoxicol Environ Saf 89:117–124

    Article  CAS  PubMed  Google Scholar 

  56. Suwa R et al (2014) Effects of silver nanocolloids on early life stages of the scleractinian coral Acropora japonica. Mar Environ Res 99:198–203

    Article  CAS  PubMed  Google Scholar 

  57. Buffet P-E et al (2014) A marine mesocosm study on the environmental fate of silver nanoparticles and toxicity effects on two endobenthic species: the ragworm Hediste diversicolor and the bivalve mollusc Scrobicularia plana. Sci Total Environ 470–471:1151–1159

    Article  PubMed  Google Scholar 

  58. Chan CYS, Chiu JMY (2015) Chronic effects of coated silver nanoparticles on marine invertebrate larvae: a proof of concept study. PLoS One 10:0132457

    Google Scholar 

  59. Ramskov T et al (2015) Accumulation and effects of sediment-associated silver nanoparticles to sediment-dwelling invertebrates. Aquat Toxicol 166:96–105

    Article  CAS  PubMed  Google Scholar 

  60. Magesky A et al (2016) Physiological effects and cellular responses of metamorphic larvae and juveniles of sea urchin exposed to ionic and nanoparticulate silver. Aquat Toxicol 174:208–227

    Article  CAS  PubMed  Google Scholar 

  61. Bertrand C et al (2016) The influence of salinity on the fate and behavior of silver standardized nanomaterial and toxicity effects in the estuarine bivalve Scrobicularia plana. Environ Toxicol Chem 35:2550–2561

    Article  CAS  PubMed  Google Scholar 

  62. Pinsino A et al (2015) Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signaling pathway. Sci Rep 5:14492. https://doi.org/10.1038/srep14492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schultz AG et al (2014) Aquatic toxicity of manufactured nanomaterials: challenges and recommendations for future testing. Environ Chem 11:207–226

    Article  CAS  Google Scholar 

  64. Garner KL, Keller AA (2014) Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies. J Nanopart Res 16:2503

    Article  Google Scholar 

  65. Docter D et al (2015) The nanoparticle biomolecule corona: lessons learned – challenge accepted? Chem Soc Rev 44:6094–6121

    Article  CAS  PubMed  Google Scholar 

  66. Strathmann R (1971) The feeding behavior of planktotrophic echinoderm larvae: mechanisms, regulation, and rates of suspension feeding. J Exp Mar Biol Ecol 6:109–160

    Article  Google Scholar 

  67. Walkey CD, Chan CW (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799

    Article  CAS  PubMed  Google Scholar 

  68. Norde W, Giacomelli CE (2000) BSA structural changes during homomolecular exchange between the adsorbed and the dissolved states. J Biotechnol 79:259–268

    Article  CAS  PubMed  Google Scholar 

  69. Lazarovits J et al (2015) Nanoparticle-blood interactions: the implications on solid tumor targeting. Chem Commun 51:2756–2767

    Article  CAS  Google Scholar 

  70. Leroueil PR et al (2007) Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? Acc Chem Res 40:335–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Miclăus T et al (2016) Dynamic protein coronas revealed as a modulator of silver nanoparticle sulphidation in vitro. Nat Commun 7:11770. https://doi.org/10.1038/ncomms11770

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pinsino A et al (2011) Manganese interferes with calcium, perturbs ERK signaling, and produces embryos with no skeleton. Toxicol Lett 123(1):217–230

    CAS  Google Scholar 

  73. Wilt FH (1999) Matrix and mineral in the sea urchin larval skeleton. J Struct Biol 126:216–226

    Article  CAS  PubMed  Google Scholar 

  74. Annunziata R et al (2014) Pattern and process during sea urchin gut morphogenesis: the regulatory landscape. Genesis 52:251–268

    Article  PubMed  Google Scholar 

  75. Scheibling RE, Hatcher BG (2013) Chapter 26: Strongylocentrotus droebachiensis. In: Sea urchins: biology and ecology, v.38. John Lawrence, Elsevier, San Diego

    Google Scholar 

  76. Bartneck M et al (2010) Phagocytosis independent extracellular nanoparticle clearance by human immune cells. Nano Lett 10(1):59–64

    Article  CAS  PubMed  Google Scholar 

  77. Ahmed KBR et al (2017) Silver nanoparticles: significance of physicochemical properties and assay interference on the interpretation of in vivo cytotoxicity studies. Toxicol In Vitro 38:179–192

    Article  Google Scholar 

  78. Sakhtianchi R et al (2013) Exocytosis of nanoparticles from cells: role in cellular retention and toxicity. Adv Colloid Interf Sci 201–202:18–29

    Article  Google Scholar 

  79. Yue T, Xianren Z (2012) Cooperative effect in receptor-mediated endocytosis of multiple nanoparticles. ACS Nano 4:3196–3205

    Article  Google Scholar 

  80. Kalmar B, Greensmith L (2009) Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev 61:310–318

    Article  CAS  PubMed  Google Scholar 

  81. Shemetov AA et al (2012) Molecular interaction of proteins and peptides with nanoparticles. ACS Nano 6:4585–4602

    Article  CAS  PubMed  Google Scholar 

  82. Macken A et al (2012) Effects of salinity on the toxicity of ionic silver and Ag-PVP nanoparticles to Tisbe battagliai and Ceramim tenuicorne. Ecotoxicol Environ Saf 86:101–110

    Article  CAS  PubMed  Google Scholar 

  83. Zhang B et al (2017) Metabolic responses of the growing Daphnia similis to chronic AgNPs exposure as revealed by GC-Q-TOF/MF and LC-Q-TOF/MF. Water Res. https://doi.org/10.1016/j.watres.2017.02.046

  84. Stumpp M et al (2012) Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. PNAS 109:18192–18197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lapresta-Fernández A et al (2012) Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. Trends Anal Chem 32(797):40–59

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Magesky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Magesky, A., Pelletier, É. (2018). Cytotoxicity and Physiological Effects of Silver Nanoparticles on Marine Invertebrates. In: Saquib, Q., Faisal, M., Al-Khedhairy, A., Alatar, A. (eds) Cellular and Molecular Toxicology of Nanoparticles. Advances in Experimental Medicine and Biology, vol 1048. Springer, Cham. https://doi.org/10.1007/978-3-319-72041-8_17

Download citation

Publish with us

Policies and ethics