Skip to main content

Abyssal Mixing in the Laboratory

  • Chapter
  • First Online:
The Ocean in Motion

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

Abstract

One of the important questions in the dynamics of the oceans is related to the cascade of mechanical energy in the abyss and its contribution to mixing. Here, we propose a unique self-consistent experimental and numerical set up that models a cascade of triadic interactions transferring energy from large-scale monochromatic input to multi-scale internal wave motion. We show how this set-up can be used to tackle the open question of studying internal wave turbulence in a laboratory, by providing, for the first time, explicit evidence of a wave turbulence framework for internal waves. Finally, beyond this regime, we highlight a clear transition to a cascade of small-scale overturning events which induce mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morozov, E. G. (1995). Semidiurnial internal wave global field. Deep-Sea Research, I(42), 135–148.

    Article  Google Scholar 

  2. Egbert, G. D., & Ray, R. D. (2000). Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 495, 775–778.

    Article  Google Scholar 

  3. Polzin, K. L., Toole, J. M., Ledwell, J. R., & Schmitt, R. W. (1997). Spatial variability of turbulent mixing in the Abyssal Ocean. Science, 276(5309), 93–96.

    Article  Google Scholar 

  4. Nazarenko, S. V. (2011). Wave turbulence. Lecture Notes in Physics, Berlin: Springer.

    Book  Google Scholar 

  5. Maas, L. R. M., Benielli, D., Sommeria, J., & Lam, F. P. A. (1997). Observations of an internal wave attractor in a confined stably stratified fluid. Nature, 388, 557–561.

    Article  Google Scholar 

  6. Brouzet, C., Sibgatullin, I.N., Ermanyuk, E.V., Joubaud, S., & Dauxois, T. (2017). Scale effects in internal wave attractors. Physical Review Fluids, 2, 114803.

    Google Scholar 

  7. Scolan, H., Ermanyuk, E. V., & Dauxois, T. (2013). Nonlinear fate of internal waves attractors. Physical Review Letters, 110, 234501.

    Article  Google Scholar 

  8. Bourget, B., Scolan, H., Dauxois, T., Le Bars, M., Odier, P., & Joubaud, S. (2014). Finite-size effects in parametric subharmonic instability. Journal of Fluid Mechanics, 759, 739–750.

    Article  Google Scholar 

  9. Dauxois, T., Joubaud, S., Odier, P., & Venaille, A. (2018). Instabilities of internal wave beams. Annual Review of Fluid Mechanics, 50, 131–156.

    Google Scholar 

  10. Phillips, O. M. (1966). The dynamics of the upper ocean. New York: Cambridge University Press.

    Google Scholar 

  11. Dauxois, T., & Young, W. R. (1999). Near-critical refection of internal waves. Journal of Fluid Mechanics, 390, 271–295.

    Article  Google Scholar 

  12. Maas, L. R. M., & Lam, F. P. A. (1995). Geometric focusing of internal waves. Journal of Fluid Mechanics, 300, 1–41.

    Article  Google Scholar 

  13. Berry, M. V. (1981). Regularity and chaos in classical mechanics, illustrated by three deformations of a circular billiard. European Journal of Physics, 2, 91–102.

    Article  Google Scholar 

  14. Fischer, P. F. (1997). An overlapping Schwarz method for spectral element solution of the incompressible Navier Stokes equations. Journal of Computational Physics, 133, 84–101.

    Article  Google Scholar 

  15. Fischer, P. F, Mullen, J. S. (2001). Filter-based stabilization of spectral element methods. Comptes rendus de l’Académie des Sciences Paris Series I–Analyse Number, 332, 265–270.

    Google Scholar 

  16. Brouzet, C., Sibgatullin, I., Scolan, H., Ermanyuk, E. V., & Dauxois, T. (2016). Internal wave attractors examined using laboratory experiments and 3D numerical simulations. Journal of Fluid Mechanics, 793, 109–131.

    Article  Google Scholar 

  17. Brouzet, C. (2016). Internal wave attractors: from geometrical focusing to non-linear energy cascade and mixing. Ph.D. dissertation, ENS de Lyon. https://tel.archives-ouvertes.fr/tel-01361201/en.

  18. Gostiaux, L., Didelle, H., Mercier, S., & Dauxois, T. (2007). A novel internal waves generator. Experiments in Fluids, 42(1), 123–130.

    Article  Google Scholar 

  19. Mercier, M. J., Martinand, D., Mathur, M., Gostiaux, L., Peacock, T., & Dauxois, T. (2010). New wave generation. Journal of Fluid Mechanics, 657, 308–334.

    Article  Google Scholar 

  20. Brouzet, C., Ermanyuk, E. V., Joubaud, S., Sibgatullin, I. N., & Dauxois, T. (2016). Energy cascade in internal wave attractors. Europhysics Letters, 113, 44001.

    Article  Google Scholar 

  21. Yarom, E., & Sharon, E. (2014). Experimental observation of steady inertial wave turbulence in deep rotating flows. Nature Physics, 10, 510–514.

    Article  Google Scholar 

  22. Sibgatullin, E., Ermanyuk, L., Maas, X., Xu & Dauxois, T. (2017). Directnumerical simulation of three-dimensional inertial wave attractors. Ivannikov ISPRAS open conference 2017 (ISPRAS) (pp. 137-143). Moscow, Russia.

    Google Scholar 

  23. Echeverri, P., Yokossi, T., Balmforth, N. J., & Peacock, T. (2011). Tidally generated internal-wave attractors between double ridges. Journal of Fluid Mechanics, 669, 354–374.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the LABEX iMUST (ANR-10-LABX-0064) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). This work has achieved thanks to the resources of PSMN from ENS de Lyon. E.V.E. gratefully acknowledges his appointment as a Marie Curie incoming fellow at Laboratoire de physique ENS de Lyon. INS is gratefull for support Russian Foundation for Basic Research 15-01-06363 and Russian Science Foundation 14-50-00095. Direct numerical simulations were performed on supercomputer Lomonosov of Moscow State University. We thank L. Maas, G. Pillet and H. Scolan for helpful discussions and D. Le Tourneau and M. Moulin for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Dauxois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dauxois, T., Ermanyuk, E., Brouzet, C., Joubaud, S., Sibgatullin, I. (2018). Abyssal Mixing in the Laboratory. In: Velarde, M., Tarakanov, R., Marchenko, A. (eds) The Ocean in Motion. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-319-71934-4_16

Download citation

Publish with us

Policies and ethics