Skip to main content

On Budget-Feasible Mechanism Design for Symmetric Submodular Objectives

  • Conference paper
  • First Online:
Web and Internet Economics (WINE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10660))

Included in the following conference series:

Abstract

We study a class of procurement auctions with a budget constraint, where an auctioneer is interested in buying resources from a set of agents. The auctioneer would like to select a subset of the resources so as to maximize his valuation function, without exceeding his budget. As the resources are owned by strategic agents, our overall goal is to design mechanisms that are truthful, budget-feasible, and obtain a good approximation to the optimal value. Previous results on budget-feasible mechanisms have considered mostly monotone valuation functions. In this work, we mainly focus on symmetric submodular valuations, a prominent class of non-monotone submodular functions that includes cut functions. We begin with a purely algorithmic result, obtaining a \(\frac{2e}{e-1}\)-approximation for maximizing symmetric submodular functions under a budget constraint. We then proceed to propose truthful, budget feasible mechanisms (both deterministic and randomized), paying particular attention on the Budgeted Max Cut problem. Our results significantly improve the known approximation ratios for these objectives, while establishing polynomial running time for cases where only exponential mechanisms were known. At the heart of our approach lies an appropriate combination of local search algorithms with results for monotone submodular valuations, applied to the derived local optima.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In some works on mechanism design, symmetric submodular functions have a different meaning and refer to the case where v(S) depends only on |S|. Here we have adopted the terminology of earlier literature on submodular optimization, e.g., [14].

  2. 2.

    The algorithm of [22] can be derandomized, but only assuming an oracle for the extension by expectation, of the objective function v.

References

  1. Ageev, A.A., Sviridenko, M.I.: Approximation algorithms for maximum coverage and max cut with given sizes of parts. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 17–30. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48777-8_2

    Chapter  Google Scholar 

  2. Amanatidis, G., Birmpas, G., Markakis, E.: Coverage, matching, and beyond: new results on budgeted mechanism design. In: Cai, Y., Vetta, A. (eds.) WINE 2016. LNCS, vol. 10123, pp. 414–428. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-54110-4_29

    Chapter  Google Scholar 

  3. Amanatidis, G., Birmpas, G., Markakis, E.: On budget-feasible mechanism design for symmetric submodular objectives. CoRR abs/1704.06901 (2017)

    Google Scholar 

  4. Anari, N., Goel, G., Nikzad, A.: Mechanism design for crowdsourcing: an optimal 1-1/e competitive budget-feasible mechanism for large markets. In: 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, pp. 266–275 (2014)

    Google Scholar 

  5. Bei, X., Chen, N., Gravin, N., Lu, P.: Budget feasible mechanism design: from prior-free to Bayesian. In: Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, pp. 449–458 (2012)

    Google Scholar 

  6. Borodin, A., Filmus, Y., Oren, J.: Threshold models for competitive influence in social networks. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 539–550. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17572-5_48

    Chapter  Google Scholar 

  7. Caselton, W.F., Zidek, J.V.: Optimal monitoring network designs. Stat. Probab. Lett. 2(4), 223–227 (1984)

    Article  MATH  Google Scholar 

  8. Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via the multilinear relaxation and contention resolution schemes. SIAM J. Comput. 43(6), 1831–1879 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, N., Gravin, N., Lu, P.: On the approximability of budget feasible mechanisms. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pp. 685–699 (2011)

    Google Scholar 

  10. Cressie, N.A.: Statistics for Spatial Data. Wiley, Hoboken (1993)

    MATH  Google Scholar 

  11. Dobzinski, S., Papadimitriou, C.H., Singer, Y.: Mechanisms for complement-free procurement. In: Proceedings 12th ACM Conference on Electronic Commerce (EC-2011), pp. 273–282 (2011)

    Google Scholar 

  12. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for submodular maximization. In: IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, pp. 570–579. IEEE Computer Society (2011)

    Google Scholar 

  14. Fujishige, S.: Canonical decompositions of symmetric submodular systems. Discret. Appl. Math. 5, 175–190 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goel, G., Nikzad, A., Singla, A.: Mechanism design for crowdsourcing markets with heterogeneous tasks. In: Proceedings of the Second AAAI Conference on Human Computation and Crowdsourcing, HCOMP 2014 (2014)

    Google Scholar 

  16. Gupta, A., Nagarajan, V., Singla, S.: Adaptivity gaps for stochastic probing: submodular and XOS functions. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pp. 1688–1702 (2017)

    Google Scholar 

  17. Gupta, A., Roth, A., Schoenebeck, G., Talwar, K.: Constrained non-monotone submodular maximization: offline and secretary algorithms. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 246–257. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17572-5_20

    Chapter  Google Scholar 

  18. Horel, T., Ioannidis, S., Muthukrishnan, S.: Budget feasible mechanisms for experimental design. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 719–730. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54423-1_62

    Chapter  Google Scholar 

  19. Jalaly, P., Tardos, E.: Simple and Efficient Budget Feasible Mechanisms for Monotone Submodular Valuations. arXiv:1703:10681 (2017)

  20. Kleinberg, J., Tardos, E.: Algorithm Design. Addison Wesley, Boston (2006)

    Google Scholar 

  21. Krause, A., Singh, A.P., Guestrin, C.: Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9, 235–284 (2008)

    MATH  Google Scholar 

  22. Kulik, A., Shachnai, H., Tamir, T.: Approximations for monotone and nonmonotone submodular maximization with knapsack constraints. Math. Oper. Res. 38(4), 729–739 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Maximizing nonmonotone submodular functions under matroid or knapsack constraints. SIAM J. Discret. Math. 23(4), 2053–2078 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Leonardi, S., Monaco, G., Sankowski, P., Zhang, Q.: Budget Feasible Mechanisms on Matroids. arXiv:1612:03150 (2016)

  25. Myerson, R.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions - I. Math. Program. 14(1), 265–294 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. Queyranne, M.: Minimizing symmetric submodular functions. Math. Program. 82(1–2), 3–12 (1998)

    MathSciNet  MATH  Google Scholar 

  28. Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve. SIAM J. Comput. 20(1), 56–87 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Singer, Y.: Budget feasible mechanisms. In: 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, pp. 765–774 (2010)

    Google Scholar 

  30. Singer, Y.: How to win friends and influence people, truthfully: influence maximization mechanisms for social networks. In: Proceedings of the 5th International Conference on Web Search and Web Data Mining, WSDM 2012, pp. 733–742 (2012)

    Google Scholar 

  31. Singla, A., Krause, A.: Incentives for privacy tradeoff in community sensing. In: Proceedings of the First AAAI Conference on Human Computation and Crowdsourcing, HCOMP 2013. AAAI (2013)

    Google Scholar 

  32. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wolsey, L.A.: Maximising real-valued submodular functions: primal and dual heuristics for location problems. Math. Oper. Res. 7(3), 410–425 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Markakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amanatidis, G., Birmpas, G., Markakis, E. (2017). On Budget-Feasible Mechanism Design for Symmetric Submodular Objectives. In: R. Devanur, N., Lu, P. (eds) Web and Internet Economics. WINE 2017. Lecture Notes in Computer Science(), vol 10660. Springer, Cham. https://doi.org/10.1007/978-3-319-71924-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71924-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71923-8

  • Online ISBN: 978-3-319-71924-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics