Skip to main content

Integrated Safety and Security Risk Assessment Methods: A Survey of Key Characteristics and Applications

  • Conference paper
  • First Online:
Critical Information Infrastructures Security (CRITIS 2016)

Abstract

Over the last years, we have seen several security incidents that compromised system safety, of which some caused physical harm to people. Meanwhile, various risk assessment methods have been developed that integrate safety and security, and these could help to address the corresponding threats by implementing suitable risk treatment plans. However, an overarching overview of these methods, systematizing the characteristics of such methods, is missing. In this paper, we conduct a systematic literature review, and identify 7 integrated safety and security risk assessment methods. We analyze these methods based on 5 different criteria, and identify key characteristics and applications. A key outcome is the distinction between sequential and non-sequential integration of safety and security, related to the order in which safety and security risks are assessed. This study provides a basis for developing more effective integrated safety and security risk assessment methods in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kriaa, S., Pietre-Cambacedes, L., Bouissou, M., Halgand, Y.: A survey of approaches combining safety and security for industrial control systems. Reliab. Eng. Syst. Safety 139, 156–178 (2015)

    Article  Google Scholar 

  2. RISI Database: Schoolboy Hacks into Polish Tram System (2016). http://www.risidata.com/Database/Detail/schoolboy_hacks_into_polish_tram_system

  3. Stoneburner, G.: Toward a unified security-safety model. Computer 39(8), 96–97 (2006)

    Article  Google Scholar 

  4. Macher, G., Höller, A., Sporer, H., Armengaud, E., Kreiner, C.: A combined safety-hazards and security-threat analysis method for automotive systems. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9338, pp. 237–250. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24249-1_21

    Chapter  Google Scholar 

  5. Schmittner, C., Ma, Z., Schoitsch, E., Gruber, T.: A case study of FMVEA and CHASSIS as safety and security co-analysis method for automotive cyber physical systems. In: Proceedings of the 1st ACM Workshop on Cyber Physical System Security (CPSS), pp. 69–80 (2015)

    Google Scholar 

  6. Sabaliauskaite, G., Mathur, A.P.: Aligning cyber-physical system safety and security. In: Cardin, M.A., Krob, D., Cheun, L.P., Tan, Y.H., Wood, K. (eds.) Complex Systems Design & Management Asia 2014, pp. 41–53. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-12544-2_4

    Google Scholar 

  7. Schmittner, C., Ma, Z., Smith, P.: FMVEA for safety and security analysis of intelligent and cooperative vehicles. In: Bondavalli, A., Ceccarelli, A., Ortmeier, F. (eds.) SAFECOMP 2014. LNCS, vol. 8696, pp. 282–288. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10557-4_31

    Google Scholar 

  8. Chen, Y., Chen, S., Hsiung, P., Chou, I.: Unified security and safety risk assessment - a case study on nuclear power plant. In: Proceedings of the International Conference on Trusted Systems and their Applications (TSA), pp. 22–28 (2014)

    Google Scholar 

  9. Steiner, M., Liggesmeyer, P.: Combination of safety and security analysis - finding security problems that threaten the safety of a system. In: Workshop on Dependable Embedded and Cyber-physical Systems (DECS), pp. 1–8 (2013)

    Google Scholar 

  10. Fovino, I.N., Masera, M., De Cian, A.: Integrating cyber attacks within fault trees. Reliab. Eng. Syst. Safety 94(9), 1394–1402 (2009)

    Article  Google Scholar 

  11. European Union Agency for Network and Information Security (ENISA). The Risk Management Process (2016). https://www.enisa.europa.eu/activities/risk-management/current-risk/risk-management-inventory/rm-process

  12. Cherdantseva, Y., Burnap, P., Blyth, A., Eden, P., Jones, K., Soulsby, H., Stoddart, K.: A review of cyber security risk assessment methods for SCADA systems. Comput. Secur. 56, 1–27 (2016)

    Article  Google Scholar 

  13. International Electrotechnical Commission (IEC).: IEC 60812: Analysis Techniques for System Reliability - Procedures for Failure Mode and Effects Analysis (2006)

    Google Scholar 

  14. Lee, W.S., Grosh, D.L., Tillman, F.A., Lie, C.H.: Fault tree analysis, methods, and applications - a review. IEEE Trans. Reliab. R–34(3), 194–203 (1985)

    Article  MATH  Google Scholar 

  15. Kaiser, B., Liggesmeyer, P., Mackel, O.: A new component concept for fault trees. In: Proceedings of the 8th Australian Workshop on Safety Critical Systems and Software (SCS), vol. 33, pp. 37–46 (2003)

    Google Scholar 

  16. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)

    Google Scholar 

  17. Roy, A., Kim, D.S., Trivedi, K.S.: Scalable optimal countermeasure selection using implicit enumeration on attack countermeasure trees. In: Proceedings of the 42nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 1–12 (2012)

    Google Scholar 

  18. National Institute of Standards and Technology (NIST): Risk Management Guide for Information Technology Systems (2002)

    Google Scholar 

  19. Scandariato, R., Wuyts, K., Joosen, W.: A descriptive study of Microsoft’s threat modeling technique. Requirements Eng. 20(2), 163–180 (2015)

    Article  Google Scholar 

  20. Fovino, I.N., Masera, M.: Through the description of attacks: a multidimensional view. In: Górski, J. (ed.) SAFECOMP 2006. LNCS, vol. 4166, pp. 15–28. Springer, Heidelberg (2006). https://doi.org/10.1007/11875567_2

    Chapter  Google Scholar 

  21. International Organisation for Standardization (ISO): ISO 31000: 2009 - Risk Management - Principles and Guidelines (2009)

    Google Scholar 

  22. Raspotnig, C., Karpati, P., Katta, V.: A combined process for elicitation and analysis of safety and security requirements. In: Bider, I., Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Wrycza, S. (eds.) BPMDS/EMMSAD -2012. LNBIP, vol. 113, pp. 347–361. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31072-0_24

    Chapter  Google Scholar 

  23. Schmittner, C., Gruber, T., Puschner, P., Schoitsch, E.: Security application of failure mode and effect analysis (FMEA). In: Bondavalli, A., Di Giandomenico, F. (eds.) SAFECOMP 2014. LNCS, vol. 8666, pp. 310–325. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10506-2_21

    Google Scholar 

  24. Chen, B., Schmittner, C., Ma, Z., Temple, W.G., Dong, X., Jones, D.L., Sanders, W.H.: Security analysis of urban railway systems: the need for a cyber-physical perspective. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9338, pp. 277–290. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24249-1_24

    Chapter  Google Scholar 

  25. Information Security Forum.: Threat Horizon 2017: Dangers Accelerate (2015). https://www.securityforum.org/uploads/2015/03/Threat-Horizon_2017_Executive-Summary.pdf

Download references

Acknowledgements

This research received funding from the Netherlands Organisation for Scientific Research (NWO) in the framework of the Cyber Security research program. This research has also received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement ICT-318003 (TREsPASS). This publication reflects only the authors’ views and the Union is not liable for any use that may be made of the information contained herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabarathinam Chockalingam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chockalingam, S., Hadžiosmanović, D., Pieters, W., Teixeira, A., van Gelder, P. (2017). Integrated Safety and Security Risk Assessment Methods: A Survey of Key Characteristics and Applications. In: Havarneanu, G., Setola, R., Nassopoulos, H., Wolthusen, S. (eds) Critical Information Infrastructures Security. CRITIS 2016. Lecture Notes in Computer Science(), vol 10242. Springer, Cham. https://doi.org/10.1007/978-3-319-71368-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71368-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71367-0

  • Online ISBN: 978-3-319-71368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics