Skip to main content

Anatomy and Structure of Australian Seagrasses

  • Chapter
  • First Online:
Seagrasses of Australia

Abstract

Seagrasses are monocotyledonous angiosperms, and as with terrestrial angiosperms, they have vegetative organs (roots, rhizomes and shoots with leaf sheaths and leaf blades ), and reproductive organs (flowers, fruits and seeds ). They have adapted to a marine environment in a saline medium, and have rather simple tissues and cell types such as a thin cuticle and epidermal cells with concentrated chloroplasts but lack stomata in the leaves. Within the vascular bundles, the cell walls of vascular bundle sheath cells are either lignified, suberized or have wall ingrowths. The number and size of xylem elements are much reduced in seagrasses. Phloem cells have thin or nacreous wall and/or thick walled sieve elements. Whether these structural variations are significant in solute translocation remains to be determined. Seagrass rhizomes are usually herbaceous, but some become woody. They are either monopodially or sympodially branched, with adventitious roots. Roots may be branched and bear roots hairs, depending on the substratum. Air lacunae are continuous within all vegetative and reproductive organs, with regular septa interrupting the air lacunae . Unusual apoplastic fungal hyphae grow in the intercellular spaces of living leaf tissue of the subtidal Zostera muelleri . Seagrasses are monoecious or dioecious plants with hydrophilous pollination. They have unusual filamentous pollen or pollen grains that form long chains. Fruits and seeds have either a period of dormancy or germinate as they are being released. Unlike seeds of other seagrasses, the embryos of Amphibolis and Thalassodendron do not store starch but instead obtain nutrients required for the prolonged development phase of the viviparous seedlings directly from the parent plant through ‘transfer cells’. Morphological and anatomical organization of both vegetative and reproductive organs vary among Australian seagrass taxonomic groups, reflecting their different evolutionary origins, as well as providing a means of indentifying genera and species with classical taxonomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arber A (1920) Water plants. A study of aquatic angiosperms. Cambridge University Press, Cambridge

    Google Scholar 

  • Arber A (1925) Monocotyledons. A morphological study. Cambridge University Press, Cambridge

    Google Scholar 

  • Barnabas AD (1983) Composition and fine structural features of longitudinal veins in leaves of Thalassodendron ciliatum. S Afr J Bot 2:317–325

    Article  Google Scholar 

  • Barnabas AD (1988) Apoplastic tracer studies in the leaves of a seagrass. I. Pathway through epidermal and mesophyll tissues. Aquat Bot 32:63–77

    Article  Google Scholar 

  • Barnabas AD (1989) Apoplastic tracer studies in the leaves of a seagrass. II. Pathway into leaf veins. Aquat Bot 35:375–386

    Article  Google Scholar 

  • Barnabas AD (1991) Thalassodendron ciliatum (Forssk.) den Hartog: root structure and histochemistry in relation to apoplastic transport. Aquat Bot 40:129–143

    Article  CAS  Google Scholar 

  • Barnabas AD (1994) Apoplastic and symplastic pathways in leaves and roots of the seagrass Halodule uninervis (Forssk.) Aschers. Aquat Bot 47:155–174

    Article  Google Scholar 

  • Barnabas AD (1996) Casparian band-like structures in the root hypodermis of some aquatic angiosperms. Aquat Bot 55:217–225

    Article  Google Scholar 

  • Barnabas AD, Kasvan S (1983) Structural features of the leaf epidermis of Halodule uninervis. S Afr J Bot 2:311–316

    Article  Google Scholar 

  • Birch WR (1981) Morphology of germinating seeds of the seagrass Halophila spinulosa (R. Br.) Aschers. (Hydrocharitaceae). Aquat Bot 17:79–90

    Article  Google Scholar 

  • Black JM (1913) The flowering and fruiting of Pectinella antarctica (Cymodocea antarctica) Trans Proc Roy Soc S Aust 37: 1–5

    Google Scholar 

  • Bragg LH, McMillan C (1986) SEM comparison of fruits and seeds of Syringodium (Cymodoceaceae) from Texas, U.S. Virgin Islands, and the Philippines. Contrib Marine Sci 30:91–103

    Google Scholar 

  • Cambridge ML, Kuo J (1982) Morphology, anatomy and histochemistry of the Australian seagrasses of the genus Posidonia König (Posidoninaceae) III. Posoinida sinuosa Cambridge & Kuo. Aquat Bot 14:1–14

    Google Scholar 

  • Cambridge ML, Carstairs SA, Kuo J (1983) An unusual method of vegetative propagation in Australian Zosteraceae. Aquat Bot 15:201–203

    Google Scholar 

  • Clough BF, Attwill PM (1980) Primary productivity of Zostera muellerii Irmisch ex Aschers. in Westernport Bay (Victoria, Australia). Aquat Bot 9:1–13

    Article  Google Scholar 

  • de los Santos CB, Onoda Y, Vergara JJ, Pérez-Lloréns JL, Bouma TJ, La Nafie YA, Cambridge ML, Brun FG (2016) A comprehensive analysis of mechanical and morphological traits in temperate and tropical seagrass species. Mar Ecol Prog Ser 551:81–94

    Google Scholar 

  • Devarajan PT, Suryanarayanan TS, Geetha V (2002) Endophytic fungi associated with the tropical seagrass Halophila ovalis (Hydrocharitaceae). Indian J Mar Sci 31:73–74

    Google Scholar 

  • Doohan ME, Newcomb EH (1976) Leaf ultrastructure and δ13C values of three seagrasses from the Great Barrier Reef. Aust J Plant Physiol 3:9–23

    Article  Google Scholar 

  • Ducker SC, Foord NJ, Knox RB (1977) Biology of Australian seagrasses: the genus Amphibolis Agardh (Cymodoceaceae). Aust J Bot 25:67–95

    Article  Google Scholar 

  • Ducker SC, Pettitt JM, Knox RB (1978) Biology of Australian seagrasses: pollen development and submarine pollination in Amphibolis antarctica and Thalassodendron ciliatum (Cymodoceaceae). Aust J Bot 26:265–285

    Article  Google Scholar 

  • García M, Kuo J, Kilminster K, Walker D, Rosselló-Mora R, Duarte CM (2005) Microbial colonization in the seagrass Posidonia spp. roots. Mar Biol Res 1:388–395

    Article  Google Scholar 

  • Garcias-Bonet N, Arrieta JM, de Santana CN, Durate CM, Marbà N (2012) Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica). Front Microbiol 3:1–16

    Article  Google Scholar 

  • Hocking PJ, Cambridge ML, McComb AJ (1980) Nutrient accumulation in the fruits of two species of seagrasses, Posidonia australis and P. sinuosa. Ann Bot 45:149–161

    Article  CAS  Google Scholar 

  • Hocking PJ, Cambridge ML, McComb AJ (1981) The nitrogen and phosphorus nutrition of developing plants of two seagrasses, Posidonia australis and P. sinuosa. Aquat Bot 11:245–262

    Article  CAS  Google Scholar 

  • Isaacs FM (1969) Floral structure and germination in Cymodocea ciliata. Phytomporhology 19:44–51

    Google Scholar 

  • Kaul RB (1978) Morphology of germination and establishment of aquatic seedlings in Alismataceae and Hydrocharitaceae. Aquat Bot 5:139–147

    Google Scholar 

  • Kay QON (1971) Floral structure in marine angiosperms Cymodocea serrulata and Thalassodendron ciliatum (Cymodoceaceae). Bot J Linn Soc. 64:423–429

    Google Scholar 

  • Kendrick GA, Waycott M, Carruthers TJB, Cambridge ML, Hovey RK, Krauss SL, Lavery PS, Les DH, Lowe RJ, Mascaró OV (2012) The central role of dispersal in the maintenance and persistence of seagrass populations. Bioscience 62:56–65

    Article  Google Scholar 

  • Kuo J (1978) Morphology, anatomy and histochemistry of the Australian seagrasses of the genus Posidonia König (Posidoniaceae). I. Leaf blade and leaf sheath of Posidonia australis Hook. f. Aquat Bot 5:171–190

    Article  Google Scholar 

  • Kuo J (1983a) Notes on the biology of Australian seagrasses. Proc Linn Soc NSW 106:225–245

    Google Scholar 

  • Kuo J (1983b) Nacreous wall sieve elements in marine Angiosperms. Amer J Bot 70:159–164

    Article  Google Scholar 

  • Kuo J (1984) Structural aspects of apoplastic fungal hyphae in a marine angiosperm Zostera muelleri Irmisch ex Aschers. (Zosteraceae). Protoplasma 121:1–7

    Article  Google Scholar 

  • Kuo J (1993a) Functional leaf anatomy and ultrastructure in a marine angiosperm, Syringodium isoetifolium (Aschers.) Dandy (Cymodoceaceae). Aust J Mari Freshwat Res 44:59–73

    Google Scholar 

  • Kuo J (1993b) Root anatomy and rhizosphere ultrastructure in tropical seagrasses. Aust J Mari Freshwat Res 44:75–84

    Google Scholar 

  • Kuo J (2005) A revision on the genus Heterozostera (Zosteraceae). Aquat Bot 81:97–140

    Article  Google Scholar 

  • Kuo J, Cambridge ML (1978) Morphology, anatomy and histochemistry of the Australian seagrasses of the genus Posidonia König (Posidoniaceae). II. Rhizome and root of Posidonia australis Hook. f. Aquat Bot 5:191–206

    Article  Google Scholar 

  • Kuo J, Kirkman H (1987) Floral and seedling morphology and anatomy of Thalassodendron pachyrhizum den Hartog (Cymodoceaceae). Aquat Bot 29:1–17

    Article  Google Scholar 

  • Kuo J, Kirkman H (1990) Anatomy of viviparous seagrasses seedlings of Amphibolis and Thalassodendron and their nutrient supply. Bot Mar 33:117–126

    Article  Google Scholar 

  • Kuo J, Kirkman H (1992) Fruits, seeds, and germination in the seagrass Halophila ovalis (Hydrocharitaceae). Bot Mar 35:197–204

    Article  Google Scholar 

  • Kuo J, Kirkman H (1995) Halophila decipiens Ostenfeld in estuaries of southwestern Australia. Aquat Bot 51:335–340

    Article  Google Scholar 

  • Kuo J, Kirkman H (1996) Seedling development of selected Posidonia species from southwest Australia. In: Kuo J, Phillips RC, Walker DI, Kirkman H (eds) Seagrass biology: proceedings of an international workshop. Faculty of Science, University of Western Australia, Perth, pp 57–64

    Google Scholar 

  • Kuo J, McComb AJ (1989) Seagrass taxonomy, structure and development. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses. A treatise on the biology of seagrasses with special reference to the australian region. Elsevier, Amsterdam, pp 6–73

    Google Scholar 

  • Kuo J, McComb AJ, Cambridge ML (1981) Ultrastructure of the seagrass rhizosphere. New Phytol 89:139–143

    Article  Google Scholar 

  • Kuo J, Cook IH, Kirkman H (1987) Observations on vegetative propagules in the seagrass genus Amphibolis C. Agardh. (Cymodoceaceae). Aquat Bot 27:291–293

    Article  Google Scholar 

  • Kuo J, Ridge RW, Lewis SV (1990) The leaf internal morphology and ultrastructure of Zostera muelleri Irmisch ex Aschers. (Zosteraceae): a comparative study of the intertidal and subtidal forms. Aquat Bot 36:217–236

    Article  Google Scholar 

  • Kuo J, Lee Long W, Coles RG (1993) Occurrence and fruit and seed biology of Halophila tricostata Greenway (Hydrocharitaceae). Aust J Mari Freshwat Res 44:43–57

    Google Scholar 

  • Kuo J, den Hartog C (2006) Seagrass morphology, anatomy, and ultrastructure. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: Biology, Ecology and Conservation, pp 51–87. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Küsel K, Pinkart HC, Drake HL, Devereux R (1999) Acetogenic and sulfate-reducing bacteria inhabiting the rhizoplane and deep cortex cells of the seagrass Halodule wrightii. Apply Environ Microbiol 65:5117–5123

    Google Scholar 

  • Larkum AWD (1995) Halophila capricorni (Hydrocharitaceae): a new species of seagrass from the Coral Sea. Aquat Bot 51: 319-328

    Google Scholar 

  • Ma G, Zhang X, Bunn E, Dixon K (2012) Megasporogensis and embryogenesis in three sympatric Posidonia species. Aquat Bot 100:1–7

    Article  Google Scholar 

  • McComb AJ, Cambridge M, Kirkman H, Kuo J (1981) Biology of Australian seagrasses. In: Pate JS, McComb AJ (eds) The Biology of Australian Plants, pp 258–293. University of West Australian Press, Perth

    Google Scholar 

  • McConchie CA, Knox RB (1989a) Pollination and reproductive biology of seagrasses. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses. A treatise on the biology of seagrasses with special reference to the Australian Region. Elsevier, Amsterdam, pp 74–111

    Google Scholar 

  • McConchie CA, Knox RB (1989b) Pollen–stigma interaction in the seagrass Posidonia australis. Ann Bot 63:235–248

    Article  Google Scholar 

  • McConchie CA, Ducker SC, Knox RB (1982a) Biology of Australian seagrasses: floral development and morphology of Amphibolis (Cymodoceaceae). Aust J Bot 30:251–264

    Article  Google Scholar 

  • McConchie CA, Knox RB, Ducker SC (1982b) Pollen wall structure and cytochemistry in the seagrass Amphibolis griffithii (Cymodoceaceae). Ann Bot 50:729–732

    Article  Google Scholar 

  • McMillan C (1988) Seed germination and seedling development of Halophila decipiens Ostenfeld (Hydrocharitaceae). Aquat Bot 31:169–176

    Google Scholar 

  • McMillan C, Bragg LH (1987) Comparison of fruits of Syringodium (Cymodoceaceae) from Texas, U.S. Virgin Islands and the Philippines. Aquat Bot 28:97–100

    Google Scholar 

  • Ostenfeld CH (1916) Contribution to Western Australian Botany. Part 1. Dan Bot Ark 2:1–44

    Google Scholar 

  • Pettitt JM (1976) Pollen wall and stigma surface in the marine angiosperms Thalassia and Thalassodendron. Micron 7:21–31

    Google Scholar 

  • Pettitt JM (1980) Reproduction in seagrass: nature of pollen and receptive surface of the stigma in the Hydrocharitaceae. Ann Bot 45:257–271

    Article  CAS  Google Scholar 

  • Pettitt JM (1984) Aspects of flowering and pollination in marine angiosperms. Oceanogr Mar Biol Annu Rev 22:315–342

    Google Scholar 

  • Pettitt JM, Jermy AC (1975) Pollen in hydrophilous angiosperms. Micron 5:377–405

    Google Scholar 

  • Pettitt JM, McConchie MC, Ducker SC, Knox RB (1980) Unique adaptations for submarine pollination in seagrasses. Nature 286:487–489

    Article  Google Scholar 

  • Pettitt JM, McConchie CA, Ducker SC, Knox RB (1983) Reproduction in seagrasses pollination in Amphibolis antarctica. Proc R Soc Lond. (Ser B) 219:119–135

    Article  Google Scholar 

  • Pettitt JM, McConchie CA, Ducker SC, Knox RB (1984) Reproduction in seagrasses: pollen wall morphogenesis in Amphibolis antarctica and wall structure in filiform grains. Nord J Bot 4:199–216

    Article  Google Scholar 

  • Remizowa MV, Sokoloff DD, Calvo S, Tomasello A, Rudall PJ (2012) Flowers and inflorescence of the seagrass Posidonia (Posidoceaceae, Alismatales). Am J Bot 99:1592–1608

    Article  PubMed  Google Scholar 

  • Roberts DG (1993) Root-hair structure and development in the seagrass Halophila ovalis (R. Br.) Hook. f. Aust J Mar Freshw Res 44:85–100

    Google Scholar 

  • Roberts DG, McComb AJ, Kuo J (1984) The structure and continuity of the lacunae system of the seagrass Halophila ovalis (R. Br.) Hook. f. (Hydrocharitaceae). Aquat Bot 18:377–388

    Article  Google Scholar 

  • Roberts DG, McComb AJ, Kuo J (1985) Root development in the seagrass Halophila ovalis (R.Br) Hook. f. (Hydrocharitaceae), with particular reference to the root lacunae. New Phytol 100:25–36

    Article  Google Scholar 

  • Sakayaroj J, Preedanon S, Supaphon O, Jones EBG, Phongpaichit S (2010) Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Divers 42:27–45

    Article  Google Scholar 

  • Sauvageau C (1889) Contribution à l’étude du système mécanique dans la racine des plantes aquatiques. Les Zostera, Cymodocea et Posidonia. J Bot Paris 169–181

    Google Scholar 

  • Sauvageau C (1890a) Observations sur la sturacture des feuilles des plantes aquatiques. J Bot Paris 4:41–50; 68–76; 117–126; 129–135; 173–178; 181–192; 221–229; 237–245

    Google Scholar 

  • Sauvageau C (1890b) Sur la structure de la feuille des Hydrocharitadées marines. J Bot Paris 4(269–275):289–295

    Google Scholar 

  • Sauvageau C (1890c) Sur la structure de la feuille des genre Halodule et Phyllospadix. J Bot Paris 4:321–332

    Google Scholar 

  • Sauvageau C (1891a) Sur la feuilles monocotylédons aquatiques. Annls Sci Nat Bot Ser 7(13):103–296

    Google Scholar 

  • Sauvageau C (1891b) Sur la tige des Cymodocées Aschs. J Bot Paris 5(205–211):235–243

    Google Scholar 

  • Sauvageau C (1891c) Sur la racine des Cymodocées. Ass fr Av Sci Congr Marseille, 482–477

    Google Scholar 

  • Sauvageau C (1891d) Sur la tige des Zostera. J Bot Paris 5(33–45):59–68

    Google Scholar 

  • Sinclair EA, Hovey R, Statton J, Fraser MW, Cambridge ML, Kendrick GA (2016a) Comment on ‘seagrass viviparous propagules as a potential long-distance dispersal mechanism’ by A CG Thomson et al. Estuaries Coasts 39:290–293

    Google Scholar 

  • Sinclair AE, Station J, Renae H, Anthony JM, Dixon KW, Kendrick GA (2016b) Production at extremes: pseudoviviparty, hybridization and genetic mosatic in Posidonia australis (Posidoniaceae). Ann Bot 117: 237–247

    Google Scholar 

  • Stafford-Bell RE, Chariton AA, Robinso RW (2016) Germination and early-stage development in the seagrass, Zostera muelleri Irmisch ex Asch. in response to multiple stressors. Aquat Bot 128:18–25

    Article  CAS  Google Scholar 

  • Statton J, Cambridge ML, Dixon KW, Kendrick GA (2013) Aquaculture of Posidonia australis seedlings for seagrass restoration programs: effect of sediment type and organic enrichment on growth. Restor Ecol 21:250–259

    Article  Google Scholar 

  • Statton J, Kendrick GA, Dixon KW, Cambridge ML (2014) Inorganic nutrient supplements constrain restoration potential of seedlings of the seagrass, Posidonia australis. Restor Ecol 22:196–203

    Article  Google Scholar 

  • Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J (2014) Diversity and antimicrobial activity of endophytic fungi isolated from the seagrass Enhalus acoroides. Indian J Geo-Mar Sci 43:785–797

    Google Scholar 

  • Tepper JGO (1882) Further observations on the propagation of Cymodocea antarctica. Trans Proc Royc Soc S Aust 4:47–49

    Google Scholar 

  • Tomlinson PB (1974) Vegetative morphology and meristem dependence: the foundation of productivity in seagrasses. Aquaculture 4:107–130

    Article  Google Scholar 

  • Tomlinson PB (1982) VII. Helobiae (Alismatidae). In: Metcalfe CR (ed) Anatomy of the monocotyledons. Clarendon Press, Oxford, 522 pp

    Google Scholar 

  • Tomlinson PB, Posluszny U (1978) Aspects of floral morphology and development in the seagrass Syringodium filiformes (Cymodoceaceae). Bot Gaz 139:333–345

    Article  Google Scholar 

  • Torta L, Piccolo L, Piazza G, Burruano S, Colombo P, Ottonello D, Perrone R, Maida GD, Pirrotta M, Tomassello A, Calvo S (2015) Lulwoana sp., a dark septate endophyte in roots of Posidonia oceanica (L.) Delile seagrass. Pl Biol 17:505–511

    Article  CAS  Google Scholar 

  • Tyerman SD (1989) Solute and water relations of seagrasses. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses. A treatise on the biology of seagrasses with special reference to the Australian Region. Elsevier, Amsterdam, pp 723–759

    Google Scholar 

  • Tyerman SD, Hatcher AI, West RJ, Larkum AWD (1984) Posidonia australis growing in altered salinities: leaf growth, regulation of turgor and the development of osmotic gradients. Aust J Plant Physiol 11:35–47

    Article  Google Scholar 

  • Venkatachalam A, Thirunavukkarasu N, Suryanaryanan TS (2015) Distribution and diversity of endophytes in seagrasses. Fungal Ecol 13:60–65

    Article  Google Scholar 

  • Vohnik M, Borovec O, Zupan I, Vondrásek D, Petrtyl M, Sudová R (2015) Anatomically and morphologically unique dark septate endophytic association in the roots of the Mediterranean seagrass Posidonia oceanica. Mycorrhiza 25:663–672

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to L. Y. Kuo and John Murphy for the preparation of the Figures. Three anonymous reviewers who made valuable and constructive comments on the early version of the manuscript. This chapter honors to Arthur J McComb, who provided inspiration, encouragement and support, and who coauthored the first definitive book on Australian seagrasses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuo, J., Cambridge, M.L., Kirkman, H. (2018). Anatomy and Structure of Australian Seagrasses. In: Larkum, A., Kendrick, G., Ralph, P. (eds) Seagrasses of Australia. Springer, Cham. https://doi.org/10.1007/978-3-319-71354-0_4

Download citation

Publish with us

Policies and ethics