Skip to main content

Safe, Flexible and Productive Human-Robot-Collaboration for Disassembly of Lithium-Ion Batteries

  • Chapter
  • First Online:
Recycling of Lithium-Ion Batteries

Abstract

The rising number of electric vehicles will lead to an increase of EV batteries reaching their end-of-life. Efforts are therefore being made to develop technologies and processes for recycling, remanufacturing and reusing EV batteries. One important and necessary step for the recycling process is the disassembly of EOL EV batteries. Unpredictable lot sizes and volumes, as well as significant variations in battery design between different car models challenges the disassembly automation. Disassembly is therefore currently carried out manually. Fully-automated disassembly would require high product specific investments which is not economically feasible in changing production environments. Human robot collaboration aims to overcome those problems with partial-automation by incorporating sensor integrated robotics in more fields of human activity. This chapter presents the implementation of human robot collaboration for disassembly of lithium-ion Batteries. While the human operator performs the more complex tasks, the robot performs simple, repetitive tasks such as removing screws and bolts. An intuitive programming environment, which does not require experience in robot programming, is combined with cost efficient tooling and additional 3D safety sensors to realize a safe, productive and ergonomic workspace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apley DW, Seliger G, Voit L, Shi J (1998) Diagnostics in disassembly unscrewing operations. Int J Flex Manuf Syst 10(2):111–128. https://doi.org/10.1023/A:1008089230047

    Article  Google Scholar 

  • Audi AG (2015) New human-robot cooperation in Audi’s production processes. http://www.audi.com/aola/brand/en_lc/tools/news/pool/2015/02/New_human-robot_cooperation_in_Audi_s_production.html. Accessed 22 Nov 2015

  • Awad R, Heppner G, Roennau A, Bordignon M (2016) ROS engineering workbench based on semantically enriched app models for improved reusability. In: 2016 IEEE 21st international conference on emerging technologies and factory automation (ETFA), pp 1–9. https://doi.org/10.1109/ETFA.2016.7733581

  • Bdiwi M (2014) Integrated sensors system for human safety during cooperating with industrial robots for handing-over and assembling tasks. Procedia CIRP 23:65–70. https://doi.org/10.1016/j.procir.2014.10.099

    Article  Google Scholar 

  • BG/BGIA (2011) BG/BGIA risk assessment recommendations according to machinery directive. BGIA—institute for occupational safety and health of the german social accident insurance

    Google Scholar 

  • BĂ¼ker U, DrĂ¼e S, Götze N, Hartmann G, Kalkreuter B, Stemmer R, Trapp R (2001) Vision-based control of an autonomous disassembly station. Robot Auton Syst 35(3–4):179–189. https://doi.org/10.1016/S0921-8890(01)00121-X

    Article  MATH  Google Scholar 

  • Cherubini A, Passama R, Fraisse P, Crosnier A (2015) A unified multimodal control framework for human–robot interaction. Robot Auton Syst 70:106–115. https://doi.org/10.1016/j.robot.2015.03.002

    Article  Google Scholar 

  • Cruz-RamĂ­rez SR, Mae Y, Arai T, Takubo T, Ohara K (2011) Vision-based hierarchical recognition for dismantling robot applied to interior renewal of buildings. Comput Aided Civ Infrastruct Eng 26(5):336–355. https://doi.org/10.1111/j.1467-8667.2010.00689.x

    Article  Google Scholar 

  • Dröder K, Dietrich F, Tornow A, Löchte C, Wonneberg B, Gerbers R, Bobka P (2017) Transfersysteme. Handbuch Industrie 4.0(1):429–451. ISBN: 978-3-446-44642-7

    Google Scholar 

  • ElSayed A, Kongar E, Gupta SM, Sobh T (2012) A robotic-driven disassembly sequence generator for end-of-life electronic products. J Intell Robot Syst 68(1):43–52. https://doi.org/10.1007/s10846-012-9667-8

    Article  Google Scholar 

  • Ezer N, Fisk AD, Rogers WA (2009) Attitudinal and intentional acceptance of domestic robots by younger and older adults. Univers Access Hum Comput Interact 5615:39–48. https://doi.org/10.1007/978-3-642-02710-9_5

    Google Scholar 

  • Fanuc (2015) Robot finder LR Mate arc welding CR-35iA Paint Robots M-10iA M-20 M-410 M-710iC M-900 M-2000iA R-1000iA R-2000 M-1iA M-2iA M-3iA range overview accessories collaborative robot CR-35iA. http://www.fanuc.eu/pt/en/robots/robot-filter-page/collaborative-cr35ia. Accessed on 24 Nov 2015

  • Flacco F, Kroeger T, Luca A de, Khatib O (2014) A depth space approach for evaluating distance to objects. J Intell Robot Syst. https://doi.org/10.1007/s10846-014-0146-2

  • Gerbers R, MĂ¼cke M, Dietrich F, Dröder K (2016) Simplifying robot tools by taking advantage of sensor integration in human collaboration robots. Procedia CIRP 44:287–292. https://doi.org/10.1016/j.procir.2016.02.135

  • Gil P, Pomares J, Diaz SvPC, Candelas F, Torres F (2007) Flexible multi-sensorial system for automatic disassembly using cooperative robots. Int J Comput Integr Manuf 20(8):757–772. https://doi.org/10.1080/09511920601143169

  • Herrmann C, Raatz A, Mennenga M, Schmitt J, Andrew S (2012) Assessment of automation potentials for the disassembly of automotive lithium Ion battery systems. In: Dornfeld DA, Linke BS (eds) Leveraging technology for a sustainable world: Proceedings of the 19th CIRP conference on life cycle engineering. University of California at Berkeley, Berkeley, USA, 23–25 May 2012. Springer, Berlin Heidelberg, pp 149–154

    Google Scholar 

  • Heyn H, KrĂ¼ger T (2015) Towards human-robot cooperation—systematic approach and applications within the Volkswagen group. International Conference on Intelligent Robots and Systems, Hamburg

    Google Scholar 

  • Hoffmann A, Schierl A, Angerer A, StĂ¼ben M, Vistein M, Reif W (2015) Robot collision avoidance using an environment model for capacitive sensors. In: Planning, control, and sensing for safe human-robot interaction. IEEE International Conference on Robotics and Automation (ICRA), Seattle, USA

    Google Scholar 

  • ISO 10218-1 (2011) Robots and robotic devices—safety requirements for industrial robots—Part 1: Robots

    Google Scholar 

  • ISO/TS 15066 (2016) Robots and robotic devices—collaborative robots

    Google Scholar 

  • Kaplan F (2004) Investigating cultural differences in the acceptance of robots. Int J Human Robot 01(03):465–480. https://doi.org/10.1142/S0219843604000289

  • Knight W (2014) How human-robot teamwork will upend manufacturing. http://www.technologyreview.com/news/530696/how-human-robot-teamwork-will-upend-manufacturing/. Accessed on 22 Nov 2015

  • KĂ¼the D (2015) RobotergestĂ¼tztes Lösen von Schraubverbindungen mit Hilfe eines Bildverarbeitungssystems

    Google Scholar 

  • Luca A de, Flacco F (2012) Integrated control for pHRI: Collision avoidance, detection, reaction and collaboration. In: 4th IEEE RAS & EMBS ìnternational conference on biomedical robotics and biomechatronics (BioRob 2012), pp 288–295

    Google Scholar 

  • Nave M, JĂ¼nemann R (2003) Beitrag zur automatisierten Demontage durch Optimierung des Trennprozesses von Schraubenverbindungen, 1. Aufl. Logistik fĂ¼r die Praxis. Praxiswissen GmbH Gesellschaft fĂ¼r innovative Qualifizierung, Dortmund

    Google Scholar 

  • Trentlage C (2014) Entwicklung einer Gestensteuerung fĂ¼r einen KUKA Leichtbauroboter unter Einsatz der Tiefenbildkamera ASUS XtionPRO LIVE

    Google Scholar 

  • Tsujimura T, Yabuta T (1991) Adaptive force control of screwdriving with a positioning-controlled manipulator. Robot Auton Syst 7(1):57–65. https://doi.org/10.1016/0921-8890(91)90027-I

  • Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: IEEE computer society conference on computer vision and pattern recognition. CVPR 2001, I-511-I-518

    Google Scholar 

  • Vongbunyong S, Chen WH (2015) Disassembly automation: automated systems with cognitive abilities. Sustainable production, life cycle engineering and management. Springer, Cham

    Google Scholar 

  • Vongbunyong S, Kara S, Pagnucco M (2013) Application of cognitive robotics in disassembly of products. CIRP annals—manufacturing technology 62(1):31–34. https://doi.org/10.1016/j.cirp.2013.03.037

  • Wang L, Schmidt B, Nee AY (2013) Vision-guided active collision avoidance for human-robot collaborations. Manuf Lett 1(1):5–8. https://doi.org/10.1016/j.mfglet.2013.08.001

  • Wegener K, Andrew S, Raatz A, Dröder K, Herrmann C (2014) Disassembly of electric vehicle batteries using the example of the Audi Q5 hybrid system. Procedia CIRP 23:155–160. https://doi.org/10.1016/j.procir.2014.10.098

  • Wegener K, Chen WH, Dietrich F, Dröder K, Kara S (2015) Robot assisted disassembly for the recycling of electric vehicle batteries. Procedia CIRP 29:716–721. https://doi.org/10.1016/j.procir.2015.02.051

  • Wu Y-H, Wrobel J, Cornuet M, KerhervĂ© H, DamnĂ©e S, Rigaud A-S (2014) Acceptance of an assistive robot in older adults: a mixed-method study of human-robot interaction over a 1-month period in the living lab setting. Clin Interv Aging 9:801–811. https://doi.org/10.2147/CIA.S5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Gerbers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gerbers, R., Wegener, K., Dietrich, F., Dröder, K. (2018). Safe, Flexible and Productive Human-Robot-Collaboration for Disassembly of Lithium-Ion Batteries. In: Kwade, A., Diekmann, J. (eds) Recycling of Lithium-Ion Batteries. Sustainable Production, Life Cycle Engineering and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-70572-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70572-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70571-2

  • Online ISBN: 978-3-319-70572-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics