Skip to main content

Simple Encrypted Arithmetic Library - SEAL v2.1

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10323))

Included in the following conference series:

Abstract

Achieving fully homomorphic encryption was a longstanding open problem in cryptography until it was resolved by Gentry in 2009. Soon after, several homomorphic encryption schemes were proposed. The early homomorphic encryption schemes were extremely impractical, but recently new implementations, new data encoding techniques, and a better understanding of the applications have started to change the situation. In this paper we introduce the most recent version (v2.1) of Simple Encrypted Arithmetic Library - SEAL, a homomorphic encryption library developed by Microsoft Research, and describe some of its core functionality.

R. Player—Much of this work was done during an internship at Microsoft Research, Redmond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bigger q means higher noise bound (good).

  2. 2.

    Bigger q means lower security (bad).

  3. 3.

    More precisely, \(n_f\) describes how many coefficients are used when truncating possibly infinite base-\(\beta \) expansions of rational numbers.

  4. 4.

    We used the version available on February 23rd, 2017 (commit ).

References

  1. FV-NFLlib. https://github.com/CryptoExperts/FV-NFLlib. Accessed 17 Feb 2017

  2. HElib. https://github.com/shaih/HElib. Accessed 21 Nov 2016

  3. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter choices in HElib and SEAL. Cryptology ePrint Archive, Report 2017/047 (2017). http://eprint.iacr.org/2017/047

  4. Albrecht, M.R., Cid, C., Faugère, J.-C., Fitzpatrick, R., Perret, L.: Algebraic algorithms for LWE problems. IACR Cryptology ePrint Archive 2014:1018 (2014)

    Google Scholar 

  5. Albrecht, M.R., Cid, C., Faugère, J.-C., Fitzpatrick, R., Perret, L.: On the complexity of the BKW algorithm on LWE. Des. Codes Crypt. 74(2), 325–354 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving LWE by reduction to unique-SVP. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 293–310. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12160-4_18

    Google Scholar 

  7. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 403–415. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7_34

    Chapter  Google Scholar 

  9. Bajard, J.C., Eynard, J., Hasan, A., Zucca, V.: A full RNS variant of FV like somewhat homomorphic encryption schemes. Cryptology ePrint Archive, Report 2016/510 (2016). http://eprint.iacr.org/2016/510

  10. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM 50(4), 506–519 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomorphic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 1–13. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_1

    Chapter  Google Scholar 

  12. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 309–325. ACM (2012)

    Google Scholar 

  13. Buchmann, J.A., Büscher, N., Göpfert, F., Katzenbeisser, S., Krämer, J., Micciancio, D., Siim, S., van Vredendaal, C., Walter, M.: Creating cryptographic challenges using multi-party computation: the LWE challenge. In: Emura, K., Hanaoka, G., Zhang, R. (eds.) Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography, AsiaPKC@AsiaCCS, Xi’an, China, May 30–June 03, 2016, pp. 11–20. ACM (2016)

    Google Scholar 

  14. Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption scheme is best? In: Sako, K. [33], pp. 325–340

    Google Scholar 

  15. Costache, A., Smart, N.P., Vivek, S., Waller, A.: Fixed point arithmetic in SHE schemes. Technical report, Cryptology ePrint Archive, Report 2016/250 (2016). http://eprint.iacr.org/2016/250

  16. Crandall, R., Pomerance, C.: Prime Numbers: A Computational Perspective, vol. 182. Springer Science and Business Media, Heidelberg (2006). https://doi.org/10.1007/0-387-28979-8

    MATH  Google Scholar 

  17. Crockett, E., Peikert, C.: Challenges for ring-LWE. Cryptology ePrint Archive, Report 2016/782 (2016). http://eprint.iacr.org/2016/782

  18. Crockett, E., Peikert, C.: \(\Lambda \) \(o\) \(\lambda \): functional lattice cryptography. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016, pp. 993–1005. ACM (2016)

    Google Scholar 

  19. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: Manual for using homomorphic encryption for bioinformatics. Technical report, Microsoft Research (2015). http://research.microsoft.com/apps/pubs/default.aspx?id=258435

  20. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report 2012/144 (2012). http://eprint.iacr.org/

  21. Gentry, C.: Fully homomorphic encryption using ideal lattices. STOC 9, 169–178 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, Q., Johansson, T., Stankovski, P.: Coded-BKW: solving LWE using lattice codes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 23–42. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_2

    Chapter  Google Scholar 

  23. Halevi, S., Shoup, V.: Design and implementation of a homomorphic-encryption library (2013). http://people.csail.mit.edu/shaih/pubs/he-library.pdf

  24. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_31

    Chapter  Google Scholar 

  25. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_25

    Google Scholar 

  26. Harvey, D.: Faster arithmetic for number-theoretic transforms. J. Symb. Comput. 60, 113–119 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lepoint, T., Naehrig, M.: A Comparison of the homomorphic encryption schemes FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 318–335. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-6_20

    Chapter  Google Scholar 

  28. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_21

    Chapter  Google Scholar 

  29. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  30. Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.-O., Lepoint, T.: NFLlib: NTT-based fast lattice library. In: Sako [33], pp. 341–356

    Google Scholar 

  31. Micciancio, D., Regev, O.: Post-quantum cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Lattice-based Cryptography. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7_5

    Chapter  Google Scholar 

  32. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93. ACM (2005)

    Google Scholar 

  33. Sako, K. (ed.): CT-RSA 2016. LNCS, vol. 9610. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8

    MATH  Google Scholar 

  34. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes Crypt. 71(1), 57–81 (2014)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, H., Laine, K., Player, R. (2017). Simple Encrypted Arithmetic Library - SEAL v2.1. In: Brenner, M., et al. Financial Cryptography and Data Security. FC 2017. Lecture Notes in Computer Science(), vol 10323. Springer, Cham. https://doi.org/10.1007/978-3-319-70278-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70278-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70277-3

  • Online ISBN: 978-3-319-70278-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics