Skip to main content

TiO2 Photocatalysts for Degradation of Micropollutants in Water

  • Living reference work entry
  • First Online:
Clean Water and Sanitation

Definition

Micropollutants are water pollutants with the maximum concentrations as high as few micrograms/liter and the minimum concentrations as low as few nanograms/liter of water. Micropollutants typically enter water streams as a result of human activity.

Advanced oxidation processes are water purification technologies which involve generation of strong oxidizing species that destroy pollutants.

Photocatalysis is light-activated acceleration of chemical reactions in the presence of a light-absorbing photocatalyst material.

Heterogeneous photocatalysis uses a light-absorbing solid photocatalyst to produce oxidizing and reducing species in the presence of light. Heterogeneous photocatalysis is one of the advanced oxidation technologies for water treatment, which uses strong oxidizing species to degrade organic pollutants.

Introduction

The demand for clean water is rapidly increasing worldwide, as the global population is growing. The United Nations (UN) recognized access to clean...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Al-Odaini NA, Zakaria MP, Yaziz MI, Surif S, Abdulghani M (2013) The occurrence of human pharmaceuticals in wastewater effluents and surface water of Langat River and its tributaries, Malaysia. Int J Environ Anal Chem 93(3):245–264. https://doi.org/10.1080/03067319.2011.592949

    Article  CAS  Google Scholar 

  • Anastas PT, Warner JC (1998) Principles of green chemistry. In: Green chemistry: theory and practice. Oxford University Press, New York, pp 29–56

    Google Scholar 

  • Archer E, Wolfaardt GM, Van Wyk JH (2017) Pharmaceutical and personal care products (PPCPs) as endocrine disrupting contaminants (EDCs) in South African surface waters. Water SA 43(4):684–706

    Article  CAS  Google Scholar 

  • Buser H-R, Müller MD, Theobald N (1998) Occurrence of the pharmaceutical drug clofibric acid and the herbicide mecoprop in various Swiss lakes and in the North Sea. Environ Sci Technol 32(1):188–192

    Article  CAS  Google Scholar 

  • Carabin A, Drogui P, Robert D (2016) Photocatalytic oxidation of carbamazepine: application of an experimental design methodology. Water Air Soil Pollut 227(4):1–16

    Article  CAS  Google Scholar 

  • Carbonaro S, Sugihara MN, Strathmann TJ (2013) Continuous-flow photocatalytic treatment of pharmaceutical micropollutants: activity, inhibition, and deactivation of TiO2 photocatalysts in wastewater effluent. Appl Catal B Environ 129:1–12

    Article  CAS  Google Scholar 

  • Chen XB, Mao SS (2006) Synthesis of titanium dioxide (TiO2) nanomaterials. J Nanosci Nanotechnol 6(4):906–925

    Google Scholar 

  • Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027

    Article  CAS  Google Scholar 

  • Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52(10):3581–3599

    Article  CAS  Google Scholar 

  • Di Paola A, Bellardita M, Palmisano L (2013) Brookite, the least known TiO2 photocatalyst. Catalysts 3(1):36–73

    Article  Google Scholar 

  • Dong H, Zeng G, Tang L, Fan C, Zhang C, He X, He Y (2015) An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–146

    Article  CAS  Google Scholar 

  • Dréno B, Alexis A, Chuberre B, Marinovich M (2019) Safety of titanium dioxide nanoparticles in cosmetics. J Eur Acad Dermatol Venereol 33:34–46

    Article  Google Scholar 

  • Durupthy O, Bill J, Aldinger F (2007) Bioinspired synthesis of crystalline TiO2: effect of amino acids on nanoparticles structure and shape. Cryst Growth Des 7(12):2696–2704

    Google Scholar 

  • Felix-Cariedo TE, Duran-Alvarez JC, Jimenez-Cisneros B (2013) The occurrence and distribution of a group of organic micropollutants in Mexico City’s water sources. Sci Total Environ 454:109–118

    Google Scholar 

  • Frederichi D, Scaliante MHNO, Bergamasco R (2020) Structured photocatalytic systems: photocatalytic coatings on low-cost structures for treatment of water contaminated with micropollutants – a short review. Environ Sci Pollut Res Int 28:1–24

    Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37

    Article  CAS  Google Scholar 

  • Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582

    Article  CAS  Google Scholar 

  • Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C: Photochem Rev 9(1):1–12

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S (2012) Chemical treatment technologies for waste-water recycling – an overview. RSC Adv 2(16):6380–6388

    Article  CAS  Google Scholar 

  • Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663

    Article  CAS  Google Scholar 

  • Hanamoto S, Nakada N, Jurgens MD, Johnson AC, Yamashita N, Tanaka H (2018) The different fate of antibiotics in the Thames River, UK, and the Katsura River, Japan. Environ Sci Pollut Res 25(2):1903–1913

    Google Scholar 

  • He Z, Cheng X, Kyzas GZ, Fu J (2016) Pharmaceuticals pollution of aquaculture and its management in China. J Mol Liq 223:781–789

    Article  CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    Article  CAS  Google Scholar 

  • Huber K (2018) Resilience strategies for drought. Retrieved from https://www.c2es.org/document/resilience-strategies-for-drought/

  • Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107(19):4545–4549

    Google Scholar 

  • Ide AH, Osawa RA, Marcante LO, Pereira JD, de Azevedo JCR (2017) Occurrence of pharmaceutical products, female sex hormones and caffeine in a subtropical region in Brazil. Clean Soil Air Water 45(9):1700334

    Google Scholar 

  • Im JK, Son HS, Kang YM, Zoh KD (2012) Carbamazepine degradation by photolysis and titanium dioxide photocatalysis. Water Environ Res 84(7):554–561

    Google Scholar 

  • Kanakaraju D, Glass BD, Oelgemöller M (2013) Heterogeneous photocatalysis for pharmaceutical wastewater treatment. In: Green materials for energy, products and depollution. Springer, Dordrecht, pp 69–133

    Chapter  Google Scholar 

  • Kandiel TA, Robben L, Alkaim A, Bahnemann D (2013) Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities. Photochem Photobiol Sci 12(4):602–609

    Article  CAS  Google Scholar 

  • Khataee A, Kasiri MB (2010) Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes. J Mol Catal A Chem 328(1–2):8–26

    Article  CAS  Google Scholar 

  • Khraisheh M, Kim J, Campos L, Al-Muhtaseb AH, Walker GM, AlGhouti M (2013) Removal of carbamazepine from water by a novel TiO2–coconut shell powder/UV process: composite preparation and photocatalytic activity. Environ Eng Sci 30(9):515–526

    Google Scholar 

  • Kucuk E, Pilevneli T, Erguven GO, Aslan S, Olgun EÖ, Canlı O, Unlu K, Dilek F B, Ipek U, Avaz G, Yetis U (2021) Occurrence of micropollutants in the Yesilirmak River Basin, Turkey. Environ Sci Pollut Res Int 28:1–17

    Google Scholar 

  • Kudlek E (2018) Decomposition of contaminants of emerging concern in advanced oxidation processes. Water 10(7):955

    Article  Google Scholar 

  • Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278

    Article  CAS  Google Scholar 

  • Lee S-Y, Park S-J (2013) TiO2 photocatalyst for water treatment applications. J Ind Eng Chem 19(6):1761–1769

    Article  CAS  Google Scholar 

  • Luster E, Avisar D, Horovitz I, Lozzi L, Baker M, Grilli R, Mamane H (2017) N-doped TiO2-coated ceramic membrane for carbamazepine degradation in different water qualities. Nanomaterials 7(8):206

    Article  Google Scholar 

  • Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M (2014) Why is anatase a better photocatalyst than rutile? – model studies on epitaxial TiO2 films. Sci Rep 4(1):4043

    Google Scholar 

  • Mahy JG, Wolfs C, Vreuls C, Drot S, Dircks S, Boergers A, Tuerk J, Hermans S, Lambert SD (2020) Advanced oxidation processes for waste water treatment: from laboratory-scale model water to on-site real waste water. Environ Technol 2020:1–13

    Google Scholar 

  • Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147(1):1–59

    Article  CAS  Google Scholar 

  • MED–EUWI (2007) Mediterranean Wastewater Reuse Report. Retrieved from https://ec.europa.eu/environment/water/blueprint/pdf/med_final_report.pdf

  • Meierjohann A, Brozinski J-M, Kronberg L (2016) Seasonal variation of pharmaceutical concentrations in a river/lake system in Eastern Finland. Environ Sci: Processes Impacts 18(3):342–349

    CAS  Google Scholar 

  • Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35(5):803–814

    Article  CAS  Google Scholar 

  • Morales-Torres S, Pastrana-Martínez LM, Figueiredo JL, Faria JL, Silva AM (2012) Design of graphene-based TiO2 photocatalysts – a review. Environ Sci Pollut Res 19(9):3676–3687

    Article  CAS  Google Scholar 

  • Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C: Photochem Rev 13(3):169–189

    Article  CAS  Google Scholar 

  • Nawaz M, Miran W, Jang J, Lee DS (2017) One-step hydrothermal synthesis of porous 3D reduced graphene oxide/TiO2 aerogel for carbamazepine photodegradation in aqueous solution. Appl Catal B Environ 203:85–95

    Google Scholar 

  • Odling G, Robertson N (2019) Bridging the gap between laboratory and application in photocatalytic water purification. Cat Sci Technol 9(3):533–545

    Article  CAS  Google Scholar 

  • Osorio V, Larrañaga A, Aceña J, Pérez S, Barceló D (2016) Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers. Sci Total Environ 540:267–277

    Article  CAS  Google Scholar 

  • Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari M, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349

    Google Scholar 

  • Pesqueira JF, Pereira MFR, Silva AM (2021) A life cycle assessment of solar-based treatments (H2O2, TiO2 photocatalysis, circumneutral photo-Fenton) for the removal of organic micropollutants. Sci Total Environ 761:143258

    Article  CAS  Google Scholar 

  • Rajasulochana P, Preethy V (2016) Comparison on efficiency of various techniques in treatment of waste and sewage water – a comprehensive review. Resour Effic Technol 2(4):175–184

    Article  Google Scholar 

  • Rimoldi L, Meroni D, Falletta E, Pifferi V, Falciola L, Cappelletti G, Ardizzone S (2017) Emerging pollutant mixture mineralization by TiO2 photocatalysts. The role of the water medium. Photochem Photobiol Sci 16(1):60–66

    Article  CAS  Google Scholar 

  • Ritchie H, Roser M, Mispy J, Ortiz-Ospina E (2018) Measuring progress towards the Sustainable Development Goals. Retrieved from https://sdg-tracker.org/water-and-sanitation

  • Rodil R, Quintana JB, Concha-Grana E, Lopez-Mahia P, Muniategui-Lorenzo S, Prada-Rodriguez D (2012) Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain). Chemosphere 86(10):1040–1049

    Google Scholar 

  • Saritha P, Aparna C, Himabindu V, Anjaneyulu Y (2007) Comparison of various advanced oxidation processes for the degradation of 4-chloro-2 nitrophenol. J Hazard Mater 149(3):609–614

    Article  CAS  Google Scholar 

  • Schaaf N, Panorel I, Caputo A, Prakash S, Shaw B, Verma N, Veem K (2020) Reducing emissions from antibiotic production. Retrieved from https://www.siwi.org/publications/reducing-emissions-from-antibiotic-production/

  • Schröder P, Helmreich B, Å krbić B, Carballa M, Papa M, Pastore C, Emre Z, Oehmen A, Langenhoff A, Molinos M, Dvarioniene J, Huber C, Tsagarakis KP, Martinez-Lopez E, Meric Pagano S, Vogelsang C, Mascolo G (2016) Status of hormones and painkillers in wastewater effluents across several European states – considerations for the EU watch list concerning estradiols and diclofenac. Environ Sci Pollut Res 23(13):12835–12866

    Google Scholar 

  • Schwarzenbach RP, Egli T, Hofstetter TB, von Gunten U, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35(1):109–136

    Google Scholar 

  • Scott PD, Bartkow M, Blockwell SJ, Coleman HM, Khan SJ, Lim R, McDonald JA, Nice H, Nugegoda D, Pettigrove V, Tremblay LA, Warne MSJ, Leusch FDL (2014) A national survey of trace organic contaminants in Australian rivers. J Environ Qual 43(5):1702–1712

    Google Scholar 

  • Siah WR, Lintang HO, Shamsuddin M, Yuliati L (2016) High photocatalytic activity of mixed anatase-rutile phases on commercial TiO2 nanoparticles. IOP Conf Ser: Mater Sci Eng 107: 012005

    Google Scholar 

  • Tyler CR, Jobling S, Sumpter JP (1998) Endocrine disruption in wildlife: a critical review of the evidence. Crit Rev Toxicol 28(4):319–361.

    Google Scholar 

  • UN (2018) SDG 6 synthesis report 2018 on water and sanitation. United Nations, New York. Retrieved from https://www.unwater.org/publications/sdg-6-synthesis-report-2018-on-water-and-sanitation/

  • UN-Water (2021a) 2020: summary progress update, Geneva. Retrieved from https://www.unwater.org/publications/summary-progress-update-2021-sdg-6-water-and-sanitation-for-all/:

  • UN-Water (2021b) Indicator 6.1.1 – drinking water. SDG6. Retrieved from https://www.sdg6data.org/indicator/6.1.1

  • UN-Water (2021c) Indicator 6.3.1 – wastewater treatment. SDG6. Retrieved from https://www.sdg6data.org/indicator/6.3.1

  • UN-Water (2021d) Indicator 6.3.2 – water quality. SDG6. Retrieved from https://www.sdg6data.org/indicator/6.3.2

  • UN-Water (2021e) Indicator 6.6.1 – water related ecosystem. SDG6. Retrieved from https://www.sdg6data.org/indicator/6.6.1

  • WWF (2019) Drought risk: the global thirst for water in the era of climate crisis. WWF report 2019. Retrieved from https://wwf.panda.org/wwf_news/?352050/Worsening-drought-risk-impacts-55-million-people-every-year-says-WWF-report

  • Yang HG, Liu G, Qiao SZ, Sun CH, Jin YG, Smith SC, Zou J, Cheng HM, Lu GQ (2009) Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J Am Chem Soc 131(11):4078–4083.

    Google Scholar 

  • Zaharia C (2017) Decentralized wastewater treatment systems: efficiency and its estimated impact against onsite natural water pollution status. A Romanian case study. Process Saf Environ Prot 108:74–88

    Article  CAS  Google Scholar 

  • Zorita S, Martensson L, Mathiasson L (2009) Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Sci Total Environ 407(8):2760–2770.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Grantham Centre for Sustainable Futures for the PhD scholarship, funding and training for M. R. M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Martsinovich .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mulay, M.R., Martsinovich, N. (2021). TiO2 Photocatalysts for Degradation of Micropollutants in Water. In: Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T. (eds) Clean Water and Sanitation. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-70061-8_194-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70061-8_194-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70061-8

  • Online ISBN: 978-3-319-70061-8

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics