Skip to main content

The Future of Lithium Availability for Electric Vehicle Batteries

  • Chapter
  • First Online:
Behaviour of Lithium-Ion Batteries in Electric Vehicles

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Supported by policy, electric vehicles (EVs) powered by lithium batteries are being commercialised in an increasing number of models and their global stock surpassed two million units in 2016. However, there is uncertainty around the future price and availability of lithium, which has consequences on the feasibility of manufacturing lithium batteries at scale. Reaching the EV penetration levels foreseen by governments implies a substantial growth in lithium demand. In this chapter, we review the evidence around future lithium availability for the manufacturing of EV batteries. We examine the methods used to estimate both lithium demand from EVs and lithium supply from brines and ore. The main variables influencing demand are the future size of the EV market, the average battery capacity and the material intensity of the batteries. Supply projections depend on global reserve and resource estimates, forecast production and recyclability. We find that the assumptions made in the literature on the key variables are characterised by significant uncertainty. However based on the available evidence, it appears that lithium production may be on a lower trajectory than demand and would have to rapidly increase in order not to prove a bottleneck to the expansion of the EV market. More research is needed in order to reduce uncertainty on lithium intensity of future EVs and improve understanding of the potential for lithium production expansion and recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U. S. Department of Energy (DOE), Critical Materials Strategy. Washington D.C. (2010)

    Google Scholar 

  2. U. S. Department of Energy (DOE), Critical Materials Strategy. Washington, DC. (2011)

    Google Scholar 

  3. H. Kara et al., Lanthanide Resources and Alternatives: A report for Department for Transport and Department for Business, Innovation and Skills (Oakdene Hollins: Aylesbury, UK, 2010)

    Google Scholar 

  4. Climate Change Committee (CCC), Building a Low Carbon Economy—The UK’s contribution to Tackling Climate Change. London, UK (Dec. 2008)

    Google Scholar 

  5. International Energy Agency (IEA), Energy Technology Perspectives. Paris, France (2016)

    Google Scholar 

  6. UK Energy Research Centre (UKERC), Energy 2050. Making the Transition to a Secure and Low-Carbon Energy System: Synthesis Report. London, UK (2009)

    Google Scholar 

  7. W. Tahil, The Trouble with Lithium: Implications of Future PHEV Production for Lithium demand. Meridian International Research. Martainville, France (2007)

    Google Scholar 

  8. W. Tahil, The Trouble with Lithium 2: Under the Microscope, Meridian International Research. Martainville, France (2008)

    Google Scholar 

  9. J. Speirs et al., Renew. Sust. Energy Rev. 35, 183 (2014)

    Article  Google Scholar 

  10. A. Yaksic, J.E. Tilton, Resour. Policy 34, 185 (2009)

    Article  Google Scholar 

  11. K.R. Evans, The future of electric vehicles: setting the record straight on lithium availability. J. Energ. Security (2009) Available from: http://www.ensec.org/index.php?option=com_content&view=article&id=213

  12. L. Gaines, P.A. Nelson, Lithium-Ion Batteries: Examining Material Demand and Recycling Issues. Argonne National Laboratory. Argonne, IL, USA (2009)

    Google Scholar 

  13. P.W. Gruber et al., J. Ind. Ecol. 15, 760 (2011)

    Article  Google Scholar 

  14. D. Kushnir, B.A. Sandén, Resour. Policy 37, 93 (2012)

    Article  Google Scholar 

  15. J. Neubauer, The Impact of Lithium Availability on Vehicle Electrification, Plug-In 2011 Conference. National Renewable Energy Laboratory. Raleigh, NC, USA

    Google Scholar 

  16. G. Martin et al., Energy Storage Mater. 6, 171 (2017)

    Article  Google Scholar 

  17. G. Angerer et al., Raw materials for emerging technologies: A report commissioned by the German Federal Ministry of Economics and Technology (English Summary). Fraunhofer ISI 2009 [31/10/2011]; Available from: http://www.isi.fraunhofer.de/isi-en/service/presseinfos/2009/pri09-02.php

  18. Dundee Capital Markets (DCM), Lithium—Hype or Substance: A look at Lithium Demand and Supply (Dundee Securities Corporation: Toronto, Canada, 2009)

    Google Scholar 

  19. International Energy Agency (IEA), Technology Roadmap: Electric and Plug-In Electric Hybrid Vehicles. Paris, France (2011)

    Google Scholar 

  20. S. Marcus et al., A cleantech Resource Crisis: Will Rare Earth and Lithium Availability Thwart Cleantech Growth? (Cleantech Insight, Cleantech Group LLC, 2010)

    Google Scholar 

  21. McKinsey and Company, Roads Toward a Low-Carbon Future: Reducing CO 2 Emissions from Passenger Vehicles in the Global Road Transportation System. New York, NY (2009)

    Google Scholar 

  22. BP Energy Outlook, 2017 Edition. London, UK

    Google Scholar 

  23. International Energy Agency (IEA), World Energy Outlook. Paris, France (2016)

    Google Scholar 

  24. International Energy Agency (IEA), Energy Technology Perspectives 2017. Catalysing Energy Technology Transformations. Paris, France

    Google Scholar 

  25. OPEC, World Oil Outlook (Vienna, Austria, 2016)

    Google Scholar 

  26. Energy Perspectives Statoil, Long-Term Macro and Market Outlook (Stavanger, Norway, 2016)

    Google Scholar 

  27. International Energy Agency (IEA), Energy Technology Perspectives 2010. Scenarios& Strategies to 2050. Paris, France

    Google Scholar 

  28. M. Rosenberg, E. Garcia, Known Lithium Deposits Can Cover Electric Car Boom. Reuters, Feb. 11, 2010 [15/11/2011]

    Google Scholar 

  29. B. Nykvist, M. Nilsson, Nat. Clim. Change 5, 329 (2015)

    Article  Google Scholar 

  30. CAR Magazine, 2017. [November 2017]; Available from: http://www.carmagazine.co.uk/

  31. Green Car Congress, 2017. [November 2017]; Available from: http://www.greencarcongress.com/

  32. D. Kushnir, B.A. Sandén, Resour. Policy 37, 93 (2012)

    Article  Google Scholar 

  33. I. Rade, B.A. Andersson, J. Power Sources 93, 55 (2001)

    Article  Google Scholar 

  34. W. Tahil, How Much Lithium does a Li-ion EV Battery Really Need? Meridian International Research. Martainville, France (2010)

    Google Scholar 

  35. T. Engel, Lithium bewegt die Welt. Deutsche Gesellschaft für Sonnenenergie e. V. [International Solar Energy Society, German Section], 2007. [15/1/2012]; Available from: http://www.dgs.de/164.0.html?&tx_ttnews%5Btt_news%5D=1330&cHash=5cf989b243

  36. M. Engel-Bader, Chemetall Corporate Presentation: Lithium and the National Economy (Seminar Sociedad Nacional de Minería, Santiago de Chile, 2010)

    Google Scholar 

  37. M. Armand, J.M. Tarascon, Nature 451, 652 (2008)

    Article  Google Scholar 

  38. A.G. Ritchie, J. Power Sources 136, 285 (2004)

    Article  Google Scholar 

  39. E. Peled et al., J. Power Sources 196, 6835 (2011)

    Article  Google Scholar 

  40. G.M. Clarke, P.W. Harben, Lithium Availability Wallmap (LAWM) (2009)

    Google Scholar 

  41. C. Candelise, J. Speirs, R. Gross, Renew. Sust. Energy Rev. 15, 4972 (2011)

    Article  Google Scholar 

  42. C. Hurst, China’s Rare Earth Elements Industry: What Can the West Learn? Institute for the Analysis of Global Security (IAGS). Fort Leavenworth, KS, USA, (2010)

    Google Scholar 

  43. J. Speirs et al., Materials Availability: Potential Constraints to the Future Low-Carbon Economy. Working Paper II: Batteries, Magnets and Materials. UK Energy Research Centre. London, UK (2013)

    Google Scholar 

  44. J. Speirs et al., Materials Availability: Potential Constraints to the Future Low-Carbon Economy—Working Paper I: A Thin-Film PV Case Study. UK Energy Research Centre. London, UK, 2011

    Google Scholar 

  45. U.S. Geological Survey (USGS), Mineral Commodity Summaries 2017. U.S. Department of Interior. Reston, VA, USA

    Google Scholar 

  46. T.D. Kelly, J.A. Ober, B.W. Jaskula, Lithium Statistics. U.S. Geological Survey. Reston, VA, USA (2017)

    Google Scholar 

  47. D.E. Garrett, Handbook of Lithium and Natural Calcium Chloride (Academic Press, Cambridge, MA, 2004)

    Google Scholar 

  48. K. Evans, An Abundance of Lithium, 2008. [1/12/2011]; Available from: http://www.worldlithium.com/An_Abundance_of_Lithium_1_files/An%20Abundance%20of%20Lithium.pdf

  49. K. Evans, An Abundance of Lithium: Part Two, 2008. [1/12/2011]; Available from: http://www.evworld.com/library/KEvans_LithiumAbunance_pt2.pdf

  50. United Nations Environment Programme (UNEP), Recycling Rates of Metals: A Status Report, in Report of the Working Group on the Global Metal Flows to the International Resource Panel, 2011

    Google Scholar 

  51. European Parliament, Directive 2006/66/EC on Batteries and Accumulators and Waste Batteries and Accumulators (Belgium, Brussels, 2006)

    Google Scholar 

  52. M. Buchert, D. Schüler, D. Bleher, Critical Metals for Sustainable Technologies and their Recycling Potential. United Nations Environment Programme (UNEP) and Oko-Institut. Nairobi, Kenya (2009)

    Google Scholar 

  53. M. Contestabile, S. Panero, B. Scrosati, J. Power Sources 83, 75 (1999)

    Article  Google Scholar 

  54. A.M. Bernardes, D.C.R. Espinosa, J.A.S. Tenório, J. Power Sources 130, 291 (2004)

    Article  Google Scholar 

  55. K. Kotaich, S.E. Sloop, Recycling: Lithium and Nickel–Metal Hydride Batteries, in Encyclopedia of Electrochemical Power Sources, J. Garche, Ed., 2009, p. 188, Elsevier. Amsterdam, Netherlands

    Google Scholar 

  56. E.R. Anderson, Sustainable Lithium Supplies through 2020 in the Face of Sustainable Market Growth, in: 3rd Lithium Supply & Markets Conference. TRUGroup. Toronto, Canada (2011)

    Google Scholar 

  57. A. Ebensperger, P. Maxwell, C. Moscoso, Resour. Policy 30, 218 (2005)

    Article  Google Scholar 

  58. H. Vikström, S. Davidsson, M. Höök, App. Energy 110, 252 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie Speirs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Speirs, J., Contestabile, M. (2018). The Future of Lithium Availability for Electric Vehicle Batteries. In: Pistoia, G., Liaw, B. (eds) Behaviour of Lithium-Ion Batteries in Electric Vehicles. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-69950-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69950-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69949-3

  • Online ISBN: 978-3-319-69950-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics