Skip to main content

Generic Forward-Secure Key Agreement Without Signatures

  • Conference paper
  • First Online:
Information Security (ISC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10599))

Included in the following conference series:

Abstract

We present a generic, yet simple and efficient transformation to obtain a forward secure authenticated key exchange protocol from a two-move passively secure unauthenticated key agreement scheme (such as standard Diffie–Hellman or Frodo or NewHope). Our construction requires only an IND-CCA public key encryption scheme (such as RSA-OAEP or a method based on ring-LWE), and a message authentication code. Particularly relevant in the context of the state-of-the-art of postquantum secure primitives, we avoid the use of digital signature schemes: practical candidate post-quantum signature schemes are less accepted (and require more bandwidth) than candidate post-quantum public key encryption schemes. An additional feature of our proposal is that it helps avoid the bad practice of using long term keys certified for encryption to produce digital signatures. We prove the security of our transformation in the random oracle model.

This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - a new hope. In: Holz, T., Savage, S. (eds.) 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, 10–12 August 2016, pp. 327–343. USENIX Association (2016)

    Google Scholar 

  2. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting: security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6_18

    Chapter  Google Scholar 

  3. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and analysis of authentication and key exchange protocols (extended abstract). In: 30th ACM STOC, pp. 419–428. ACM Press, May 1998

    Google Scholar 

  4. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). doi:10.1007/3-540-48329-2_21

    Chapter  Google Scholar 

  5. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–397. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_15

    Google Scholar 

  6. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their security analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 30–45. Springer, Heidelberg (1997). doi:10.1007/BFb0024447

    Chapter  Google Scholar 

  7. Bos, J.W., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghunathan, A., Stebila, D.: Frodo: take off the ring! practical, quantum-secure key exchange from LWE. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 16, pp. 1006–1018. ACM Press, October 2016

    Google Scholar 

  8. Boyd, C., Cliff, Y., Gonzalez Nieto, J., Paterson, K.G.: Efficient one-round key exchange in the standard model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 69–83. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70500-0_6

    Chapter  Google Scholar 

  9. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001). doi:10.1007/3-540-44987-6_28

    Chapter  Google Scholar 

  10. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4_3

    Chapter  Google Scholar 

  11. Fischlin, M., Günther, F., Schmidt, B., Warinschi, B.: Key confirmation in key exchange: a formal treatment and implications for TLS 1.3. In: IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, 22–26 May 2016, pp. 452–469 (2016)

    Google Scholar 

  12. Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer, Heidelberg (2002). doi:10.1007/3-540-46035-7_20

    Chapter  Google Scholar 

  13. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997). doi:10.1007/BFb0052231

    Chapter  Google Scholar 

  14. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full forward secrecy. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 519–548. Springer, Cham (2017). doi:10.1007/978-3-319-56617-7_18

    Chapter  Google Scholar 

  15. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). doi:10.1007/3-540-36563-X_9

    Chapter  Google Scholar 

  16. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). doi:10.1007/BFb0054868

    Chapter  Google Scholar 

  17. Hoffstein, J., Pipher, J., Silverman, J.H.: NSS: an NTRU lattice-based signature scheme. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 211–228. Springer, Heidelberg (2001). doi:10.1007/3-540-44987-6_14

    Chapter  Google Scholar 

  18. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: Generic compilers for authenticated key exchange. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 232–249. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17373-8_14

    Chapter  Google Scholar 

  19. Jager, T., Paterson, K.G., Somorovsky, J.: One bad apple: backwards compatibility attacks on state-of-the-art cryptography. In: NDSS 2013. The Internet Society, February 2013

    Google Scholar 

  20. Jager, T., Schwenk, J., Somorovsky, J.: On the security of TLS 1.3 and QUIC against weaknesses in PKCS#1 v1.5 encryption. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 15, pp. 1185–1196. ACM Press, October 2015

    Google Scholar 

  21. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and Hall/CRC Press (2007)

    Google Scholar 

  22. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. J. Cryptology 20(1), 85–113 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kudla, C.J.: Special signature schemes and key agreement protocols. Ph.D. thesis, Royal Holloway University of London (2006)

    Google Scholar 

  24. Li, Y., Schäge, S., Yang, Z., Bader, C., Schwenk, J.: New modular compilers for authenticated key exchange. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 1–18. Springer, Cham (2014). doi:10.1007/978-3-319-07536-5_1

    Google Scholar 

  25. Lindner, R., Peikert, C.: Better key sizes (and Attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19074-2_21

    Chapter  Google Scholar 

  26. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  27. Mavrogiannopoulos, N., Vercauteren, F., Velichkov, V., Preneel, B.: A cross-protocol attack on the TLS protocol. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 12, pp. 62–72. ACM Press, October 2012

    Google Scholar 

  28. Morrissey, P., Smart, N.P., Warinschi, B.: The TLS handshake protocol: a modular analysis. J. Cryptology 23(2), 187–223 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and NTRU signatures. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 271–288. Springer, Heidelberg (2006). doi:10.1007/11761679_17

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel P. Smart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

de Saint Guilhem, C., Smart, N.P., Warinschi, B. (2017). Generic Forward-Secure Key Agreement Without Signatures. In: Nguyen, P., Zhou, J. (eds) Information Security. ISC 2017. Lecture Notes in Computer Science(), vol 10599. Springer, Cham. https://doi.org/10.1007/978-3-319-69659-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69659-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69658-4

  • Online ISBN: 978-3-319-69659-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics