Skip to main content

4D Textiles: Hybrid Textile Structures that Can Change Structural Form with Time by 3D Printing

  • Chapter
  • First Online:
Narrow and Smart Textiles

Abstract

Additive manufacturing combined with highly elastic, extensible textile materials provides the opportunity to explore a new range of materials: 4D textiles. The name is derived from “4D Printing”, a combination of 3D printing and a time change element, providing the fourth dimension. In the case of 4D textiles, the time response is necessary, but also the textile material provides a crucial role in responding to external stimuli. Whereas 4D printing is currently limited to very small deformations and very slow changes in time, 4D textiles offer the opportunity to increase deformation and response time. This paper covers the concepts of 4D printing, achievements in 3D printing, and the concept of 4D textiles. The role of materials, critical process parameters, critical textile processes, and potential application areas are presented. Strengths and weaknesses of 4D textiles are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brinks, G. J., Warmöskerken, M. M. C., Akkerman, R., et al. (2013). The added value of 3D polymer deposition on textiles. Dresden.

    Google Scholar 

  2. Pei, E., Shen, J., & Watling, J. (2015). Direct 3D printing of polymers onto textiles: Experimental studies and applications. Rapid Prototyping Journal, 21, 556–571.

    Article  Google Scholar 

  3. Sabantina, L., Kinzel, F., Ehrmann, A., et al. (2015). Combining 3D printed forms with textile structures—mechanical and geometrical properties of multi-material systems. IOP Conference Series: Materials Science and Engineering, 87, 1–5.

    Article  Google Scholar 

  4. Simonis, K., Schmelzeisen, D., Gesché, V., et al. (2017). 4D textiles: application in sports industry. Future Textiles, 2, 38–39.

    Google Scholar 

  5. Ge, Q., Qi, H. J., & Dunn, M. L. (2013). Active materials by four-dimension printing. Applied Physics Letters, 103. Epub ahead of print. doi:10.1063/1.4819837.

  6. Bahr, R., Tehrani, B., Hester, J., et al. (2016). Additive manufacturing techniques for origami inspired 4D printed RF components and modules. (pp. 1–4). IEEE.

    Google Scholar 

  7. Choi, J., Kwon, O-C., Jo, W., et al. (2015). 4D Printing Technology: A Review. 3D Printing and Additive Manufacturing; 2, 159–167.

    Google Scholar 

  8. Korger, M., Bergschneider, J., Lutz, M., et al. (2016). Possible applications of 3D printing technology on textile substrates. IOP Conference Series: Materials Science and Engineering, 141, 012011.

    Article  Google Scholar 

  9. Melnikova, R., Ehrmann, A., & Finsterbusch, K. (2014). 3D printing of textile-based structures by Fused Deposition Modelling (FDM) with different polymer materials. IOP Conference Series: Materials Science and Engineering, 62, 012018.

    Article  Google Scholar 

  10. Sanatgar, H. R., Campagne, C., & Nierstrasz, V. (2017). Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing process parameters. Applied Surface Science, 403, 551–563.

    Article  Google Scholar 

  11. Tibbits S. The emergence of ‘4D printing’.

    Google Scholar 

  12. Pei, E. (2014). 4D Printing: Dawn of an emerging technology cycle. Assembly Automation, 34, 310–314.

    Article  Google Scholar 

  13. Momeni, F., Mehdi Hassani, M. N. S., Liu, X., et al. (2017). A review of 4D printing. Materials and Design, 122, 42–79.

    Article  CAS  Google Scholar 

  14. Chae, M. P., Hunter-Smith, D. J., De-Silva, I., et al. (2015). Four-Dimensional (4D) printing: A new evolution in computed tomography-guided stereolithographic modeling. principles and application. Journal of Reconstructive Microsurgery, 31, 458–463.

    Article  Google Scholar 

  15. Truby, R. L., & Lewis, J. A. (2016). Printing soft matter in three dimensions. Nature, 540, 371–378.

    Article  CAS  Google Scholar 

  16. Bodaghi, M., Damanpack, A. R., & Liao, W. H. (2016). Self-expanding/shrinking structures by 4D printing. Smart Materials and Structures, 25, 1–15.

    Google Scholar 

  17. Rivera, M. L., Moukperian, M., Ashbrook D., et al. (2017). Stretching the bounds of 3D printing with embedded textiles. In G. Mark, S. Fussell, C. Lampe, et al. (Eds.), Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems—CHI’17 (pp. 497–508). New York: ACM Press.

    Google Scholar 

  18. Grimmelsmann, N., Martens, Y., Schäl, P., et al. (2016). Mechanical and electrical contacting of electronic components on textiles by 3D printing. Procedia Technology, 26, 66–71.

    Article  Google Scholar 

  19. Cabral, I., Souto, A. P., Carvalho, H., et al. (2015). Exploring geometric morphology in shape memory textiles: Design of dynamic light filters. Textile Research Journal, 85, 1919–1933.

    Article  CAS  Google Scholar 

  20. Neuß, J., Kreuziger, M., Grimmelsmann N., et al. (2017). Interaction between 3D deformation of textile fabrics and imprinted lamellae.

    Google Scholar 

  21. Clasen, D., Wallasch, M., Köneke, O., et al. (2017). Sonogrid http://sonogrid.de/konzept/.

  22. Guberan, C., Clopath, C., & Tibbits, S. Active Shoes http://www.selfassemblylab.net/ActiveShoes.php.

  23. Pahl, G., & Beitz, W. (1978). Konstruktionslehre: Handbuch für Studium und Praxis. Berlin: Springer.

    Google Scholar 

  24. Ashby, M, F. (1999). Materials selection in mechanical design (2nd ed.,) Oxford, OX ; Boston, MA: Butterworth-Heinemann.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Schmelzeisen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmelzeisen, D., Koch, H., Pastore, C., Gries, T. (2018). 4D Textiles: Hybrid Textile Structures that Can Change Structural Form with Time by 3D Printing. In: Kyosev, Y., Mahltig, B., Schwarz-Pfeiffer, A. (eds) Narrow and Smart Textiles. Springer, Cham. https://doi.org/10.1007/978-3-319-69050-6_17

Download citation

Publish with us

Policies and ethics