Skip to main content

Pulse Detonation Cycle at Kilohertz Frequency

  • Chapter
  • First Online:
Detonation Control for Propulsion

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Abstract

To realize kilohertz and higher frequency of a pulse detonation cycle (PDC), enhancement of deflagration-to-detonation transition (DDT) is necessary. A novel semi-valveless PDC method, in which the inner diameter of the oxidizer feed line is equal to that of the combustor, can increase the pressure of detonable mixture by increasing total pressure of supplying oxidizer. In demonstration experiments, ethylene as fuel, pure oxygen as the oxidizer and the combustor having an inner diameter of 10 mm and length of 100 or 60 mm were used. A PDC was successfully operated at the frequency of up to 1916 Hz. Under the condition of 1010 Hz operation, the total pressure of supplying oxidizer were varied. As the results, it was found that the DDT distance and time decreased by approximately 50% when the total pressure of supplying oxidizer increased by 242%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ciccarelli, G., & Dorofeev, S. (2008). Flame acceleration and transition to detonation in ducts. Progress in Energy and Combustion Science, 34(4), 499–550.

    Article  Google Scholar 

  • Endo, T., Yatsufusa, T., Taki, S., & Kasahara, J. (2004a). Thermodynamic analysis of the performance of a pulse detonation turbine engine. Science and Technology of Energetic Materials, 65(103), 103–110. (in Japanese).

    Google Scholar 

  • Endo, T., Kasahara, J., Matsuo, A., Inaba, K., Sato, S., & Fujiwara, T. (2004b). Pressure history at the thrust wall of a simplified pulse detonation engine. AIAA Journal, 42(9), 1921–1930.

    Article  Google Scholar 

  • Endo, T., Obayashi, R., Tajiri, T., Kimura, K., Morohashi, Y., Johzaki, T., Matsuoka, K., Hanafusa, T., & Mizunari, S. (2016). Thermal spray using a high-frequency pulse detonation combustor operated in the liquid-purge mode. Journal of Thermal Spray Technology, 25(3), 494–508.

    Article  Google Scholar 

  • Gordon, S., & McBride, B. J. (1996). Computer program for calculation of complex chemical equilibrium compositions and applications. NASA Reference Publication 1311.

    Google Scholar 

  • Gou, X., Sun, W., Chen, Z., & Ju, Y. (2010). A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms. Combustion and Flame, 157, 1111–1121.

    Article  Google Scholar 

  • Heiser, W. H., & Pratt, D. T. (2002). Thermodynamic cycle analysis of pulse detonation engines. Journal of Propulsion and Power, 18(1), 68–76.

    Article  Google Scholar 

  • Kailasanath, K. (2000). Review of propulsion applications of detonation wave. AIAA Journal, 38(9), 1698–1708.

    Article  Google Scholar 

  • Kailasanath, K. (2003). Recent developments in the research on pulse detonation engines. AIAA Journal, 41(2), 145–159.

    Article  Google Scholar 

  • Kuznetsov, M., Alekseev, V., Matsukov, I., & Dorofeev, S. (2005). DDT in a smooth tube filled with a hydrogen–oxygen mixture. Shock Waves, 14(3), 205–215.

    Article  Google Scholar 

  • Matsuo, K. (1994). Compressible fluid dynamics — Theory and analysis in internal flow. Tokyo: Rikogakusha Publ., Ltd.. (in Japanese).

    Google Scholar 

  • Matsuoka, K. (2016). Experimental study on control technique of pulsed detonation. International workshop on detonation for propulsion 2016, Singapore, July 2016.

    Google Scholar 

  • Matsuoka, K., Esumi, M., Ikeguchi, K., Kasahara, J., Matsuo, A., & Funaki, I. (2012). Optical and thrust measurement of a pulse detonation combustor with a coaxial rotary valve. Combustion and Flame, 159(3), 1321–1338.

    Article  Google Scholar 

  • Matsuoka, K., Mukai, T., & Endo, T. (2015). Development of a liquid-purge method for high-frequency operation of pulse detonation combustor. Combustion Science and Technology, 187(5), 747–764.

    Article  Google Scholar 

  • Matsuoka, K., Morozumi, T., Takagi, S., Kasahara, J., Matsuo, A., & Funaki, I. (2016). Flight validation of a rotary-valved four-cylinder pulse detonation rocket. Journal of Propulsion and Power, 32(2), 383–391.

    Article  Google Scholar 

  • Matsuoka, K., Muto, K., Kasahara, J., Watanabe, H., Matsuo, A., & Endo, T. (2017a). Development of high-frequency pulse detonation combustor without purging material. Journal of Propulsion and Power, 33. Special Section on Pressure Gain Combustion, 43–50.

    Article  Google Scholar 

  • Matsuoka, K., Muto, K., Kasahara, J., Watanabe, H., Matsuo, A., & Endo T. (2017b). Investigation of fluid motion in valveless pulse detonation combustor with high-frequency operation. Proceedings of the Combustion Institute 36(2):2641–2647.

    Google Scholar 

  • Shchelkin, K. I., & Troshin, Y. K. (1965). Gasdynamics of combustion. Baltimore: Mono Book Corporation.

    Google Scholar 

  • Singh, D. J., & Jachimowski, C. J. (1994). Quasiglobal reaction model for ethylene combustion. AIAA Journal, 32(1), 213–216.

    Article  Google Scholar 

  • Stamps, D. W., & Tieszen, S. R. (1991). The influence of initial pressure and temperature on hydrogen-air-diluent detonations. Combustion and Flame, 83(3), 353–364.

    Article  Google Scholar 

  • Takahashi, T., Mitsunobu, A., Ogawa, Y., Kato, S., Yokoyama, H., Susa, A., & Endo, T. (2012). Experiments on energy balance and thermal efficiency of pulse detonation turbine engine. Science and Technology of Energetic Materials, 73(6), 181–187.

    Google Scholar 

  • Wang, K., Fan, W., Lu, W., Chen, F., Zhang, Q., & Yan, C. (2014). Study on a liquid-fueled and valveless pulse detonation rocket engine without the purge process. Energy, 71(15), 605–614.

    Google Scholar 

  • Watanabe, H. Matsuo, A. Matsuoka, K., & Kasahara, J. (2017). Numerical investigation on burned gas backflow in liquid fuel purge method. 2016 AIAA Science and Technology Forum and Exposition, AIAA2017–1284, Jan. 9–13, 2017, Texas, USA.

    Google Scholar 

  • Wu, M.-H., & Lu, T.-H. (2012). Development of a chemical microthruster based on pulsed detonation. Journal of Micromechanics and Microengineering, 22(10), Paper 105040.

    Article  Google Scholar 

  • Wu, Y., Ma, F., & Yang, V. (2003). System performance and thermodynamic cycle analysis of airbreathing pulse detonation engines. Journal of Propulsion and Power, 19(556), 556–567.

    Article  Google Scholar 

  • Yee, H. C. (1989). A class of high-resolution explicit and implicit shock-capturing methods. NASA Technical Memorandum 101088.

    Google Scholar 

Download references

Acknowledgments

This work was subsidized by a Grant-in-Aid for Scientific Research (B) (No. 26820371), the Toukai Foundation for Technology, the Paloma Environmental Technology Development Foundation, and Tatematsu Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Matsuoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matsuoka, K., Taki, H., Kasahara, J., Watanabe, H., Matsuo, A., Endo, T. (2018). Pulse Detonation Cycle at Kilohertz Frequency. In: Li, JM., Teo, C., Khoo, B., Wang, JP., Wang, C. (eds) Detonation Control for Propulsion. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-319-68906-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68906-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68905-0

  • Online ISBN: 978-3-319-68906-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics