Skip to main content

Mechatronics in the Process of Cultural Heritage and Civil Infrastructure Management

  • Chapter
  • First Online:
Mechatronics for Cultural Heritage and Civil Engineering

Abstract

Automatized survey, construction, inspection, maintenance, restoration and reconstruction have become challenging activities conducted during the process of cultural heritage and civil infrastructure management, due to the revolutionary impact of mechatronics and information technology in routine operations. The complete process is summarized, considering different aspects related to the interconnection between classical engineering and architectural problems with the emerging technologies related to automation, robotics and information communication technologies (ICT). The impact of new technologies on data acquisition for survey, inspection and monitoring is, firstly, considered, drawing upon evidence of how the use of robotized systems and sensor networks determines new sets of available data to be processed by digital tools to build advanced models. The integration among different information and numerical models permits one to test the novelties related to the use of ICT technologies for creating an exhaustive description of the examined facility. Data and models can be then used to identify and to describe defects and degradation, especially in view of determining possible performance reduction in existing structures. All the acquired knowledge opportunely managed constitutes the input for automated or partially automated decision-making process useful in facilities and infrastructure management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Akyldiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a suvey. Comput Netw 38:393–422

    Article  Google Scholar 

  2. Ansari F (2007) Practical implementation of optical fiber sensors in civil structural health monitoring. J Intel Math Syst Struct 18(8):879–889

    Article  Google Scholar 

  3. Antucheviciene J, Kala Z, Marzouk M, Rytas Vaidogas E (2105) Decision making, methods and applications in civil engineering. Math Probl Eng 2015. Article ID 160569

    Google Scholar 

  4. Antucheviciene J, Kala Z, Marzouk M, Vaidogas ER (2015) Solving civil engineering problems by means of fuzzy and stochastic MCDM methods: current state and future research. Math Probl Eng 2015. Article ID 362579

    Google Scholar 

  5. Aspinall R, Pearson D (2000) Integrated geographical assessment of environmental condition in water catchments: linking landscape ecology, environmental modelling and GIS. J Environ Manag Elsevier 59(4):299–319

    Article  Google Scholar 

  6. Avdelidis NP, Moropoulou A (2004) Applications of infrared thermography for the investigation of historic structures. J Cult Heritage Elsevier 5(1):119–127

    Article  Google Scholar 

  7. Azhar S (2011) Building information modeling (BIM): trends, benefits, risks, and challenges for the AEC Industry. Leadersh Manag Eng 11(3) American Society of Civil Engineers (ASCE)

    Google Scholar 

  8. Bai L (2013) RFID sensor-driven structural condition monitoring in integrated building information modeling environment. PhD Dissertation, University of Maryland, College Park

    Google Scholar 

  9. Balaguer C, Montero R, Victores JG, Martínez S, Jardón A (2014) Towards fully automated tunnel inspection: a survey and future trends. In: The 31st international symposium on automation and robotics in construction and mining (ISARC 2014), Sydney, pp 19–33

    Google Scholar 

  10. Bay H, Ess A, Tuytelaars T, Van Gool T (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359

    Article  Google Scholar 

  11. Betz DC, Staudigel L, Trutzel MN, Kehlenbach M (2003) Structural monitoring using fiber-optic bragg grating sensors. Struct Health Mon 2(2):145–152

    Article  Google Scholar 

  12. Burrough PA, McDonnell RA, Lloyd CD (1998, 2015) Principles of geographical information systems. Oxford University Press. ISSN 978-0-19-874284-5

    Google Scholar 

  13. Caprari C et al (2010) Highly compact robots for inspection of power plants. In: 2010 1st international conference on applied robotics for the power industry, Montreal, pp 1–6. https://doi.org/10.1109/CARPI.2010.5624412

  14. Castellazzi G, D’Altri AM, Bitelli G, Selvaggi I, Lambertini A (2015) From laser scanning to finite element analysis of complex buildings by using a semi-automatic procedure. Sensors 15:18360–18380. https://doi.org/10.3390/s150818360

    Article  Google Scholar 

  15. Castelli G, Ottaviano E, Rea P (2014) A cartesian cable-suspended robot for improving end-users’ mobility in an urban environment. Robot Comput Integr Manuf 30(3):335–343

    Article  Google Scholar 

  16. Chen XN, Xiab Q, Zhang SH, Zhou Y (2005) 3D laser scanner system for surveying and engineering. ISPRS.ecn.purdue.edu

    Google Scholar 

  17. Cruz-Ramırez SR, Mae Y, Arai T, Takubo T, Ohara K (2011) Vision-based hierarchical recognition for dismantling robot applied to interior renewal of buildings. Comput Aided Civil Infrastruct Eng 26(5):36–355

    Google Scholar 

  18. Davila Delgado J, Butler LJ, Gibbons N, Brilakis I, Elshafie MZEB, Middleton C (2016) Management of structural monitoring data of bridges using BIM. In: Proceedings of the institute of civil engineers, Bridge Engineering

    Google Scholar 

  19. Davis FW, Quattrochi DA, Ridd MK, Lam NSN, Walsh SJ, Michaelsen JC, Johnston CA (1991) Environmental analysis using integrated GIS and remotely sensed data. Some research needs and priorities. Photogram Eng Remote Sens 57(6):689–697

    Google Scholar 

  20. Eleftheriadis S, Mumovic D, Greening P, Chronis A (2015) BIM enabled optimisation framework for environmentally responsible and structurally efficient design systems. In: 32nd international symposium on automation and robotics in construction and mining (ISARC 2015) 15–18 June 2015, Oulu, Finland

    Google Scholar 

  21. Eramo N, Modoni G, Arroyo M (2012) Design control and monitoring of a jet grouted excavation bottom plug. In: Proceedings of the 7th international symposium on geotechnical aspects of underground construction in soft ground, TC28 IS Rome, Viggiani ed., Taylor & Francis Group London, 16–18 May 2011, pp 611–618. ISBN 978-0-415-66367-8

    Google Scholar 

  22. Federici F, Graziosi F, Faccio M, Colarieti A, Gattulli V, Lepidi M, Potenza F (2012) An integrated approach to the design of wireless sensor networks for structural health monitoring. Int J Distrib Sens Netw. Article ID 594842

    Google Scholar 

  23. Fedorik F, Makkonen T, Heikkilä R (2106) Integration of BIM and FEA in automation of building and bridge engineering design. In: 33rd international symposium on automation and robotics in construction (ISARC 2016), Auburn, USA, 18–21 July 2016

    Google Scholar 

  24. Gattulli V, Chiaramonte L (2005) Condition assessment by visual inspection for a bridge management system. Comput Aided Civil Infrastruct Eng 20:95–107

    Google Scholar 

  25. Gattulli V, Lepidi M, Potenza F (2016) Dynamic testing and health monitoring of historic and modern civil structures in Italy. Struct Monit and Maint 3(1):71–90

    Google Scholar 

  26. Gattulli V, Potenza F, Graziosi F, Federici F, Colarieti A, Faccio M (2014) Design of wireless sensor nodes for structural health monitoring applications. Proc Eng 87:1298–1301

    Article  Google Scholar 

  27. Gattulli V, Potenza F, Toti J, Valvona F, Marcari G (2016) Ecosmart reinforcement for a masonry polycentric pavilion vault. Open Constr Build Technol J 10(Suppl 2: M7):259–273. https://doi.org/10.2174/1874836801610010259

  28. Granosik G, Borenstein J, Hansen MG (2007) Serpentine robots for industrial inspection and surveillance. In: Low KH (ed) Industrial robotics: programming, simulation and applications. Published by pro-Literatur Verlag, Germany, pp 633–662

    Google Scholar 

  29. Guarnieri A, Pirotti F, Vettore A (2013) Cultural heritage interactive 3D models on the web: an approach using open source and free software. J Cult Heritage, Elsevier 11(3):350–353

    Article  Google Scholar 

  30. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. J Ecol Model Elsevier 147–186

    Google Scholar 

  31. Hallermann N, Morgenthal G (2013) Unmanned aerial vehicles (UAV) for the assessment of existing structures. In: IABSE symposium, Kolkata

    Google Scholar 

  32. http://petrobotproject.eu/

  33. Jacobs S, Matthys G, De Roeck G, Taerve L, de Waele W, Degrieck J (2007) Testing of a prestressed concrete girder to study the enhanced performance of monitoring by integrating optical fiber sensors. J Struct Eng 133(4):541–549

    Article  Google Scholar 

  34. Jakobsson A, Giversen J (2013) Guidelines for implementing the ISO 19100 geographic information quality standards in national mapping and cadastral agencies. Eurographics

    Google Scholar 

  35. Joerin F, Musy A (2000) Land management with GIS and multicriteria analysis. Int Trans Oper Res Elsevier 7(1):67–78

    Article  Google Scholar 

  36. Kamińska IA, Ołdak A, Turski WA (2004) Geographical information system (GIS) as a tool for monitoring and analysing pesticide pollution and its impact on public health. Ann Agric Environ Med 11(2):181–184. ISSN: 1232-1966 e-ISSN: 1898-2263

    Google Scholar 

  37. Kenny J (2016) Live BIM offers building stress monitoring in real-time, Dec 2016. http://www.bimplus.co.uk/technology/live-bim-monit6ors-bu5ilding-str9ess-real-time/

  38. Khan FS (2012) Color attributes for object detection. IEEE Conf Comput Vision Pattern Recogn 3306–3313

    Google Scholar 

  39. Kim J-W, Kim S-B, Park J-C, Nam J-W (2015) Development of crack detection system with unmanned aerial vehicles and digital image processing, In: International congress on advances in structural engineering and mechanics, Incheon

    Google Scholar 

  40. Lee S, Kalos N (2015) Bridge inspection practices using non-destructive testing methods. J Civil Eng Manag 21(5):654–665

    Google Scholar 

  41. Li QB, Ansari F (2001) Circumferential strain measurement of high strength concrete in triaxial compression by fiber optic sensor. Int J Sol Struct 38(42–43):7607–7625

    Article  MATH  Google Scholar 

  42. Lingua A, Piumatti P, Rinaudo F (2012) Digital photogrammetry: a standard approach to cultural heritage survey. In: The international archives of the photogrammetry, remote sensing and spatial information sciences, vol. XXXIV, Part 5/W12

    Google Scholar 

  43. Lynch JP, Loh K (2006) A summary review of wireless sensors and sensor networks for structural health monitoring. Shock Vib 38(2):91–128

    Article  Google Scholar 

  44. Maurelli P (2006). I Sistemi Informativi Territoriali (SIT) come contesti di rappresentazione e interazione. In: Martone M (ed) Atti del Seminario La rappresentazione per la conoscenza dell’ambiente urbano e del territorio Rome Kappa Edizioni

    Google Scholar 

  45. Meschini A, Pelliccio A (2013) Il colore nel rilievo strumentale: laser scanner, termografia e postprocessing dei dati in un sistema GIS. In: Rossi M, Siniscalco A (eds), Colore e Colorimetria. Contributi multidisciplinari, Maggioli Editore S.P.A.: 70–81. ISBN 9788838762413

    Google Scholar 

  46. Meyer E, Grussenmeyer P, Perrin JP, Durand A, Drap P (2007) A web information system for the management and the dissemination of cultural heritage data. J Cult Heritage Elsevier 8(4):396–411

    Article  Google Scholar 

  47. Moscati A (2012) Integrated information systems for the enhancement of the urban/architectural heritage, including 3D GIS, AIS (architectural information systems) and web. PhD Dissertation, Rome URN: urn:nbn:se:hj:diva-28937OAI: oai:DiVA.org:hj-28937DiVA: diva2:892496

    Google Scholar 

  48. Nagatani K, Kiribayashi S, Okada Y, Otake K, Yoshida K, Tadokoro S, Nishimura T, Yoshida T, Koyanagi E, Fukushima M, Kawatsuma S (2013) Emergency response to the nuclear accident at the Fukushima Daiichi nuclear power plants using mobile rescue robots. J Field Robot 30:44–63

    Article  Google Scholar 

  49. Ottaviano E, Ceccarelli M (2006) Application of a 3-DOF parallel manipulator for earthquake simulations. IEEE/ASME Trans Mechatron 11(2):240–246

    Article  Google Scholar 

  50. Ottaviano E, Rea P (2013) Design and operation of a 2-DOF leg-wheel hybrid robot. Robotica 31(8):1319–1325

    Article  Google Scholar 

  51. Ottaviano E, Rea P, Castelli G (2014) THROO: a tracked hybrid rover to overpass obstacles. Adv Robot 28(10):683–694. https://doi.org/10.1080/01691864.2014.891949

    Google Scholar 

  52. Patraucean V, Armeni I, Nahangi M, Yeung J, Brilakis I, Haas C (2015) State of research in automatic as-built modelling. Adv Eng Infor 29:162–171

    Article  Google Scholar 

  53. Pelliccio A (2013) Informative representation for the vulnerability analysis of anthropic landscape. Two different areas in comparison: the historical center of St. Elia Fiumerapido (Fr) and the mining site of Coreno Ausonio. Disegnarecon, April 2013. ISSN 1828-5961

    Google Scholar 

  54. Pelliccio A, Cigola M (2015) Geographic information systems (G.I.S.) for the analysis of historical small towns. In: Khosrow-Pour M (ed) Encyclopedia of information science and technology, 3rd edn. IGI Global, pp 3128–3135. ISBN 978-1-4666-5888-2 (hardcover); ISBN 978-1-4666-5889-9 (ebook); ISBN 978-1-4666-5891-2 (print &perpetual access)

    Google Scholar 

  55. Potenza F, Castelli G, Gattulli V, Ottaviano E (2017) Integrated process of images and acceleration measurements for damage detection. In: X international conference on structural dynamics, EURODYN 2017, Procedia Engineering, in press

    Google Scholar 

  56. Rea P, Pelliccio A, Ottaviano E, Saccucci M (2017) The heritage management and preservation using the mechatronic survey. Int J Architect Heritage. https://doi.org/10.1080/15583058.2017.1338790

    Google Scholar 

  57. Saranli U, Buehler M, Koditschek DE (2001) RHex: a simple and highly mobile hexapod robot. Int J Robot Res 20(7):616–631. https://doi.org/10.1177/02783640122067570 [14]

  58. Shin Y, Cho K (2015) BIM application to select appropriate design alternative with consideration of LCA and LCCA. Math Probl Eng 2015. Article ID 281640

    Google Scholar 

  59. Siegwart R, INourbakhsh R (2004) Introduction to autonomous mobile robots. MIT Press

    Google Scholar 

  60. Spencer BF, Chung-Bang Y (eds) (2010) Wireless sensor advances and applications for civil infrastructure monitoring, Newmark Structural Engineering Lab. Report Series, No.24. University of Illinois at Urbana-Champaign, Illinois. http://hdl.handle.net/2142/16434

  61. Spencer BF, Ruiz-Sandoval Manuel E, Kurata N (2004) Smart sensing technology: opportunities and challenges. Struct Control Health Monit 11:349–368

    Article  Google Scholar 

  62. Stapelberg RF (2009) Handbook of reliability, availability, maintainability and safety in engineering design. Springer

    Google Scholar 

  63. Tian Y, Wen C, Hong S (2008) Global scientific production on GIS research by bibliometric analysis from 1997 to 2006. J Inf Elsevier 2(1):65–74

    Google Scholar 

  64. Valvona F, Toti J, Gattulli V, Potenza F (2017) Effective seismic strengthening and monitoring of a masonry vault by using glass fiber reinforced cementitious matrix with embedded fiber bragg grating sensors. Comp Part B Eng 113:355–370

    Article  Google Scholar 

  65. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE computer society conference on computer vision society conference on computer vision and pattern recognition, vol 1

    Google Scholar 

  66. Wang C, Cho YK (2105) Application of as-built data in building retrofit decision making process, Procedia Eng 118:902–908

    Google Scholar 

  67. Webb GT, Vardanega PJ, Middleton CR (2015) Categories of SHM deployments: technologies and capabilities. J Bridge Eng (ASCE) 20(11):04014118

    Google Scholar 

  68. Xiongjue W (2016) Analysis on complex structure stability under different bar angle with BIM technology. Perspect Sci 7:317–322

    Article  Google Scholar 

  69. Yamauchi B (2004) PackBot: a versatile platform for military robotics. In: Proceedings of SPIE, vol 5422. Unmanned Ground Vehicle Technology VI, Orlando, FL

    Google Scholar 

  70. Yeum CM, Dyke SJ (2015) Vision-based automated crack detection for bridge inspection. Comput Aided Civil Infrastruct Eng. https://doi.org/10.1111/mice.12141

    Google Scholar 

  71. Zonta D, Pozzi M, Zanon P (2008) Managing the historical heritage using distributed technologies. Int J Archit Heritage 2(3):200–225

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Gattulli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gattulli, V., Ottaviano, E., Pelliccio, A. (2018). Mechatronics in the Process of Cultural Heritage and Civil Infrastructure Management. In: Ottaviano, E., Pelliccio, A., Gattulli, V. (eds) Mechatronics for Cultural Heritage and Civil Engineering. Intelligent Systems, Control and Automation: Science and Engineering, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-319-68646-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68646-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68645-5

  • Online ISBN: 978-3-319-68646-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics