Skip to main content

A Study of Priority Rules for a Levelled Production Plan

  • Conference paper
  • First Online:
Advances in Manufacturing

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

This paper looks as initial results of research into the validity of application of selected priority rules in the development of a levelled production plan. The development of a levelled production plan is the key stage of the authors’ own methodology of levelling production to mitigate the adverse impact of variable demand. A levelled production plan permits to maximize effects, defined as being able to deliver diverse products in a timely manner and at the same time reduce stocks and optimize efficient use of manufacturing resources. Application of an appropriate priority rule in the development of a levelled production plan is the key factor determining the effectiveness of the developed methodology. Initial research has been conducted for twenty automatically generated task sets. One hundred manufacturing schedules have been developed in total—five schedules for each set, according to the selected priority rules (shortest task time, longest task time, shortest processing time, longest processing time, first in first out). The schedules have been assessed in terms of meeting the selected key criteria for the objectives of levelled production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamrol, A.: Strategies and Practices of Efficient Operation. LEAN SIX SIGMA and other (in Polish). PWN, Warszawa (2015)

    Google Scholar 

  2. Diering, M., Dyczkowski, K.: Assessing the raters agreement in the diagnostic catheter tube connector production process using novel fuzzy similarity coefficient. In: IEEE International Conference on Industrial Engineering and Engineering Management, pp. 228–232 (2016)

    Google Scholar 

  3. Jasarevic, S., Diering, M., Brdarevic, S.: Opinions of the consultants and certification houses regarding the quality factors and achieved effects of the introduced quality system. Tehnicki Vjesnik-Technical Gazette 19(2), 211–220 (2012)

    Google Scholar 

  4. Borkowski, S., Knop, K.: Challenges faced in modern quality inspection. Manag. Prod. Eng. Rev. 7(3), 11–22 (2016)

    Google Scholar 

  5. Kłos, S., Patalas-Maliszewska, J.: Throughput analysis of automatic production lines based on simulation methods. intelligent data engineering and automated learning—IDEAL. In: Jackowski, K., Burduk, R., Walkowiak, K., Wozniak, M., Yin, H. (eds.) Lecture Notes in Computer Science, vol. 9375, pp. 181–190 (2015)

    Google Scholar 

  6. Kunz, G., Machado, J., Perondi, E.: Using timed automata for modeling, simulating and verifying networked systems controller’s specifications. In: Neural Computing and Applications, pp. 1–11 (2015)

    Google Scholar 

  7. Sika, R., Hajkowski, J.: Synergy of modeling processes in the area of soft and hard modeling. In: 8th International Conference on Manufacturing Science and Education (MSE), Trends in New Industrial Revolution (2017)

    Google Scholar 

  8. Sika, R., Rogalewicz, M.: Demerit control chart as a decision support tool in quality control of ductile cast-iron casting process. In: MATEC Web of Conferences, vol. 121, p. 05007 (2017). 8th International Conference on Manufacturing Science and Education (MSE 2017)—Trends in new industrial revolution (2017)

    Google Scholar 

  9. Krolczyk, J.B., Krolczyk, G.M., Legutko, S., Napiorkowski, J., Hloch, S., Foltys, J., Tama, E.: Material flow optimization—a case study in automotive industry. Tehnički Vjesnik 22(6), 1447–1456 (2015)

    Google Scholar 

  10. Liker, J.K., Meier, D.P.: The Toyota Way Fieldbook. A Practical Guide For Implementing Toyota’s 4Ps. The McGraw-Hill Companies, USA (2006)

    Google Scholar 

  11. Andel, T.: Accentuate heijunka, eliminate junk, supply chain flow. Mater. Handl. Eng. 54(8), 77 (1999)

    Google Scholar 

  12. Rewers, P., Żywicki, K., Hamrol, A., Chabowski, P.: Methodology of conduct in providing creation of repeatable production plan (in Polish). Bus. Manage. 3, 22–30 (2016)

    Google Scholar 

  13. Monden, Y.: Toyota Management System. Productivity Press, Portland, OR (1993)

    Google Scholar 

  14. Coleman, J.B., Vaghefi, M.: Heijunka: a key to the Toyota production system. Prod. Invent. Manage. J. 34(4), 31–35 (1994)

    Google Scholar 

  15. Rinehart, J.: After lean production: evolving employment practices in the world auto industry. Am. J. Sociol. 104(4), 1212–1214 (1997)

    Article  Google Scholar 

  16. Yano, C., Rachamadugu, R.: Sequencing to minimize overload in assembly lines with product options. Manage. Sci. 37(5), 572 (1991)

    Article  Google Scholar 

  17. Xiaobo, Z., Zhou, Z., Asres, A.: A note on Toyota’s goal of sequencing mixed models on an assembly line. Comput. Ind. Eng. 36, 57–65 (1996)

    Article  Google Scholar 

  18. Teece, D.J., Pisano G., Shuen, A.: Dynamic capabilities and strategic management. Strateg. Manage. J. 18(7) (1997)

    Google Scholar 

  19. Faccio, M., Gamberi, M., Persona, A.: Kanban number optimisation in a supermarket warehouse feeding a mixed-model assembly system. Int. J. Prod. Res. 51(10), 2997–3017 (2013)

    Article  Google Scholar 

  20. Wróblewski, K., Jurecka, A., Krawczyński, R.: Results of a study on the application of priority rules in manufacturing control (in Polish). Sci. J. Sil. Univ. Technol. Ser. Autom. 63(735), 203–214 (1982)

    Google Scholar 

  21. WrĂłblewski, K.J.: Basics of manufacturing flow control (in Polish). WNT, Warszawa (1993)

    Google Scholar 

  22. Wróblewski, K.J., Krawczyński, R., Kosieradzka, A., Kasprzyk, S.: Priority rules in manufacturing flow control (in Polish). Wydawnictwo Naukowo-Techniczne, Warszawa (1984)

    Google Scholar 

  23. Binchao, C., Matis, T.I.: A flexible dispatching rule for minimizing tardiness in job shop scheduling. Int. J. Prod. Econ. 141(1), 360–365 (2013)

    Article  Google Scholar 

  24. Błażewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Węglarz, J.: Scheduling in computer and manufacturing processes. Springer, Berlin (1996)

    MATH  Google Scholar 

  25. Coffman, E.G.: Theory of task scheduling (in Polish). WNT, Warszawa (1980)

    Google Scholar 

  26. Jardzioch, A., Bulwan, K.: The prioritisation of production orders under the bee colony algorithm. Adv. Manuf. Sci. Technol. 37(4), 49–59 (2013)

    Google Scholar 

  27. Jardzioch, A., Skobiej, B.: Application of batch algorithm in sequencing manufacturing tasks. In: Knosala, R. (ed.) Innovations in Management And Production Engineering. Polskie Towarzystwo Zarządzania Produkcją, pp. 552–559 (2014)

    Google Scholar 

  28. Knosala, R.: Applications of artificial intelligence methods (in Polish). Wydawnictwo Naukowo-Techniczne (2002)

    Google Scholar 

  29. Sawik, T.: Discrete optimization in flexible manufacturing systems (in Polish). Wydawnictwo Naukowo-Techniczne, Warszawa (1992)

    Google Scholar 

  30. Krenczyk, D., Skołud, B.: Transient states of cyclic production planning and control. Appl. Mech. Mater. 657, 961–965 (2014)

    Article  Google Scholar 

  31. Manupati, V.K., Gokula, K.M., Varela, M.L.R., Machado, J.: Telefacturing based distributed manufacturing environment for optimal manufacturing service by enhancing the interoperability in the hubs. J. Eng., 15 p. (2017)

    Google Scholar 

  32. Skołud, B.: Multi-range rhythmical manufacturing planning (in Polish). Zeszyty Naukowe Politechniki Śląskiej, Mechanika, p. 136 (2000)

    Google Scholar 

  33. Conway, R.W.: An Experimental Investigation of Priority Assignment in a Job Shop. Rand Corporation Memorandum, RM-3789-PR, Santa Monica (1964)

    Google Scholar 

  34. LeGrande, E.: The development of a factory simulation using actual operating data. Manage. Technol. 3(1), 1–19 (1963)

    Google Scholar 

  35. Nelson, R.T.: Simulation of labor efficiency and centralized assigment in a production model. Manage. Sci. 17(2) (1970)

    Google Scholar 

  36. Baker, K.R., Dan, Trietsch D.: Principles of Sequencing and Scheduling. Wiley, New Jersey (2009)

    Book  MATH  Google Scholar 

  37. Vieira, G.G., Varela, M.L.R., Putnik, G.D., Machado, J.M., Trojanowska, J.: Integrated platform for real-time control and production and productivity monitoring and analysis. Romanian Rev. Precis. Mech. Opt. Mechatron. 50, 119–127 (2016) (Mecahitech’16)

    Google Scholar 

  38. Szuszynski, M., Żurek, J.: Computer aided assembly sequence generation. Manage. Prod. Eng. Rev. 6(3), 83–87 (2015)

    Google Scholar 

Download references

Acknowledgements

This work had the financial support of Ministry of Science and Higher Education, Republic of Poland, under the project 02/23/DSPB/7695 Development of production engineering methods and tools and their implementation in the product lifecycle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justyna Trojanowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Rewers, P., Trojanowska, J., Diakun, J., Rocha, A., Reis, L.P. (2018). A Study of Priority Rules for a Levelled Production Plan. In: Hamrol, A., Ciszak, O., Legutko, S., Jurczyk, M. (eds) Advances in Manufacturing. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-68619-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68619-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68618-9

  • Online ISBN: 978-3-319-68619-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics