Skip to main content

Data Hiding in the Wild: Where Computational Intelligence Meets Digital Forensics

  • Chapter
  • First Online:
Surveillance in Action

Abstract

In the context of an increasing dependence on multimedia contents, data hiding techniques, such as watermarking and steganography, are becoming more and more important. Due to the complementary nature of their general requirements, i.e., imperceptibility, robustness, security and capacity, many data hiding schemes endeavour to find the optimal performances by applying various approaches inspired from nature. In this paper, we provide a review and analysis of the main computational intelligence approaches, including Artificial Neural Networks (ANNs) and Fuzzy Sets (FSs), which are employed in information hiding. Furthermore, with the aid of the recent state of the art, we discuss the main challenges to be addressed and future directions of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moulin P, O’Sullivan JA (2003) Information-theoretic analysis of information hiding. IEEE Trans Inf Theory 49(3):563–593

    Article  Google Scholar 

  2. Cox IJ, Miller ML (2002) The first 50 years of electronic watermarking. EURASIP J Appl Signal Process 1:126–132

    Article  Google Scholar 

  3. Cox IJ, Miller ML, Bloom JA (2001) Digital watermarking. Morgan Kaufmann, pp 26–85

    Google Scholar 

  4. Langelaar G, Setyawan I, Lagendijk RL (2000) Watermarking digital image and video data: a state-of-the-art overview. IEEE Signal Process Mag 17:20–46

    Article  Google Scholar 

  5. Premaratne P, Ko CC (1999) A novel watermark embedding and detection scheme for images in DFT domain. In: Proceedings of 7th international conference on image processing, London, pp 780–783

    Google Scholar 

  6. Cox IJ, Kilian J, Leighton FT, Shamoon T (1997) Secure spread spectrum watermarking for multimedia. IEEE Trans Image Process 6(1):673–1687

    Google Scholar 

  7. Inoue H, Miyazaki A, Katsura T (2000) Wavelet-based watermarking for tamper proofing of still images. In: Proceedings of international conference on image processing, pp 88–91

    Google Scholar 

  8. Barni M, Bartolini F, Cappellini V, De Rosa A, Piva A (2002) Color image watermarking in the Karhunen-Loève transform domain. J Electron Imaging 11:87–95

    Article  Google Scholar 

  9. Ho ATS, Zhu X, Guan YL, Marziliano P (2004) Slant transform watermarking for textured images. In: Proceedings of the 2004 international symposium on circuits and systems, vol. 5, Vancouver, Canada, 23–26 May 2004. IEEE Press, pp 700–703

    Google Scholar 

  10. Dugelay JL, Roche S (1999) Fractal transform based large digital watermark embedding and robust full blind extraction. In: Proceedings of IEEE international conference on multimedia computing and systems, pp 1003–1004

    Google Scholar 

  11. Basso A, Bergadano F, Cavagnino D, Pomponiu V, Vernone A (2009) A novel block-based watermarking scheme using the SVD transform. Algorithms 1(2):46–75

    Article  Google Scholar 

  12. Tsai C-F, Yang W-Y (2007) Real-time color image watermarking based on D-SVD scheme. In: Mery D, Rueda L (eds) Advance in image and video technology, vol 4872. Lecture notes in computer science. Springer, Berlin, pp 289–297

    Chapter  Google Scholar 

  13. Hernandez JR, Amado M, Perez-Gonzalez F (2000) DCT domain watermarking techniques for still images: detector performance analysis and a new structure. IEEE Trans Image Process 9(1):55–68

    Article  Google Scholar 

  14. Barni M, Bartolini F, Rosa AD, Piva A (2001) A new decoder for the optimum recovery of non-additive watermarks. IEEE Trans Image Process 10(5):755–766

    Article  Google Scholar 

  15. Barni M, Bartolini F, Furon T (2003) A general framework for robust watermarking security. Signal Process J 83:2069–2084

    Article  Google Scholar 

  16. Briassouli A, Strintzis MG (2004) Locally optimum nonlinearities for DCT watermark detection. IEEE Trans Image Process 13(12):1604–1607

    Article  Google Scholar 

  17. Briassouli A, Sakalides PT, Stouraitis A (2005) Hidden messages in heavy tails: DCT domain watermark detection using alpha-stable models. IEEE Trans Multimedia 7(4):700–715

    Article  Google Scholar 

  18. Nikolaidis A, Pitas I (2002) Optimal detector structure for DCT and subband domain watermarking. In: Proceedings of the IEEE international conference on image processing, pp 465–467

    Google Scholar 

  19. Voloshynovskiy S, Herrigel A, Baumgärtner N, Pun T (2006) A stochastic approach to content adaptive digital image watermarking. In: Goos G, Hartmanis J, van Leeuwen J (eds) Proceedings of international workshop on information hiding, Dresden, Germany, 29 Sept–1 Oct 1999. Lecture notes in computer science, vol 1768. Springer, Berlin, pp 211–236

    Google Scholar 

  20. Hassanien A-E, Abraham A, Kacprzyk J, Peters JF (2008) Applying genetic programming to evolve learned rules for network anomaly detection. In: Hassanien A-E, Abraham A, Kacprzyk J (eds) Computational intelligence in multimedia processing: recent advances, vol 96. Lecture notes in computer science. Springer, Berlin, pp 3–49

    Chapter  Google Scholar 

  21. Mitra S, Acharya T (2003) Soft computing. In: Mitra S, Acharya T (eds) Data mining: multimedia, soft computing, and bioinformatics. Wiley, pp 35–60

    Google Scholar 

  22. Engelbrecht AP (2002) Computational intelligence: an introduction. Willey

    Google Scholar 

  23. Bezdek JC (1994) What is computational intelligence? In: Computational intelligence imitating life. IEEE Press, New York, pp 1–12

    Google Scholar 

  24. Yardimic A (2009) Soft computing in medicine. Appl Soft Comput 9(3):1029–1043

    Article  Google Scholar 

  25. Fulcher J (2008) Computational intelligence: an introduction. In: Fulcher J, Jain LC (eds) Computational intelligence: a compendium, vol 115. Studies in computational intelligence. Springer, Berlin, pp 3–78

    Chapter  Google Scholar 

  26. Hassanien A-E, Abraham A, Kacprzyk J, Peters JF (2008) Computational intelligence: foundation and trends. In: Hassanien A-E, Abraham A, Kacprzyk J (eds) Computational intelligence in multimedia processing: recent advances, vol 96. Studies in computational intelligence. Springer, Berlin, pp 3–49

    Chapter  Google Scholar 

  27. Wu SX, Banzhaf W (2010) The use of computational intelligence in intrusion detection systems: a review. Appl Soft Comput 10(1):1–35

    Article  Google Scholar 

  28. Hassoun MH (1995) Fundamentals of artificial neural networks. MIT Press

    Google Scholar 

  29. Hertz J, Krogh A, Palmer RG (1991) Introduction to the theory of neural computing. Addison–Wesley Publishing Company

    Google Scholar 

  30. Yu P, Tsai H, Lin J (2001) Digital watermarking based on neural networks for color images. Sig Process 81(3):663–671

    Article  Google Scholar 

  31. Kutter M, Jordan F, Bossen F (1998) Digital watermarking of color images using amplitude modulation. J Electron Imaging 7(2):326–332

    Article  Google Scholar 

  32. Lu W, Lu H, Shen R (2004) Color image watermarking based on neural networks. In: Yin F, Wang J, Guo C (eds) Advances in neural networks, vol 3147. Lecture notes in computer science. Springer, Berlin, pp 651–656

    Google Scholar 

  33. Tang G, Liao X-F (2004) A neural network based blind watermarking scheme for digital images. In: Yin F, Wang J, Guo C (eds) Advances in neural networks, vol 3147. Lecture notes in computer science. Springer, Berlin, pp 645–651

    Google Scholar 

  34. Zhang J, Wang N-C (2003) Neural network based watermarking for image authentication. J Comput Aided Des Comput Graph 3:307–312

    Google Scholar 

  35. Sang J, Alam MS (2005) A neural network based lossless digital image watermarking in the spatial domain. In: Wang J, Liao X, Yi Z (eds) Advances in neural networks, vol 3497. Lecture notes in computer science. Springer, Berlin, pp 772–776

    Google Scholar 

  36. Goljan M, Fridrich JJ, Du R (2001) Distortion-free data embedding for images. In: Moskowitz IS (ed) Information hiding, vol 2137. Lecture notes in computer science. Springer, Berlin, pp 27–41

    Chapter  Google Scholar 

  37. Sang J, Liao X, Alam MS, Neural-network-based zero-watermark scheme for digital images. Opt Eng 45

    Google Scholar 

  38. Lian S (2009) Image authentication based on neural networks. http://arxiv.org/abs/0707.4524. Accessed 16 Dec 2009

  39. Piao C-R, Fan W-Z, Woo D-M, Han S-S (2006) Robust digital image watermarking using BP neural networks. In: Wang J et al (eds) Advances in natural computation, vol 3973. Lecture notes in computer science. Springer, Berlin, pp 285–292

    Google Scholar 

  40. Chen B, Wornell GW (2001) Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Trans Inf Theory 4:1423–1443

    Article  Google Scholar 

  41. Mei S, Li R, Dang H, Wang Y (2002) Decision of image watermarking strength based on artificial neural networks. In: Proceedings of the 9th international conference on neural information processing, vol. 5, pp 2430–2434

    Google Scholar 

  42. Tsai H-H, Cheng J-S, Yu P-T (2003) Audio watermarking based on HAS and neural networks in DCT domain. EURASIP J Appl Sig Process 2003(3):252–263

    Article  Google Scholar 

  43. Swanson MD, Zhu B, Tewfik A, Boney L (1998) Robust audio watermarking using perceptual masking. Sig Process 66(3):337–355

    Article  Google Scholar 

  44. Lu W, Lu H, Chung F-L (2005) Subsampling-based robust watermarking using neural network detector. In: Wang J, Liao X, Yi Z (eds) Advances in neural networks, vol 3497. Lecture notes in computer science. Springer, Berlin, pp 801–806

    Google Scholar 

  45. Chu WC (2003) DCT-based image watermarking using subsampling. IEEE Trans Multimedia 5:34–38

    Article  Google Scholar 

  46. Khan A, Tahir SF, Majid A, Coi T-S (2008) Machine learning based adaptive watermark decoding in view of anticipated attack. Pattern Recogn 41(8):2594–2610

    Article  Google Scholar 

  47. Birney KA, Fischer TR (1995) On the modeling of DCT and subband image data for compression. IEEE Trans Image Process 4(2):186–193

    Article  Google Scholar 

  48. Xu X-Q, Wen X-B, Li Y-Q, Quan J-J (2007) A new watermarking approach based on neural network in wavelet domain. In: Huang D-S, Heutte L, Loog M (eds) Advanced intelligent computing theories and applications: with aspects of artificial intelligence, vol 4682. Lecture notes in computer science. Springer, Berlin, pp 1–6

    Google Scholar 

  49. Li D, Wang D, Chen FX (2006) Robust watermark algorithm based on the wavelet moment modulation and neural network detection. J Comput Appl 26:1833–1835

    Google Scholar 

  50. Wang D, Li D, Yan J (2008) Robust watermark algorithm based on the wavelet moment modulation and neural network detection. In: Sun F et al (eds) Advances in neural networks, vol 5264. Lecture notes in computer science. Springer, Berlin, pp 392–401

    Google Scholar 

  51. Fan Y-C, Mao W-L, Tsao H-W (2003) An artificial neural network-based scheme for fragile watermarking. In: Proceedings of the international conference for consumer electronics, vol 8, pp 210–211

    Google Scholar 

  52. Zhao J, Zhou M-Q (2004) A novel wavelet image watermarking scheme combined with chaos sequence and neural network. In: Yin F, Wang J, Guo C (eds) Advances in neural networks, vol 3147. Lecture notes in computer science. Springer, Berlin, pp 663–668

    Google Scholar 

  53. Zhao J, Zhao Q, Zhou M-Q, Pan J (2005) A novel wavelet watermark algorithm based on neural network image scramble. In: Wang L, Chen K, Ong YS (eds) Advances in natural computation, vol 3611. Lecture notes in computer science. Springer, Berlin, pp 346–351

    Chapter  Google Scholar 

  54. Lu Y, Han J, Kong J, Yang Y, Hou G (2006) A novel color image watermarking method based on genetic algorithm and hybrid neural networks. In: Greco S et al (eds) Rough sets and current trends in computing, vol 4259. Lecture notes in computer science. Springer, Berlin, pp 806–814

    Chapter  Google Scholar 

  55. Elbasi E, Eskicioglu AM (2006) Neural network based transformation selection in video watermarking. In: Proceedings of the Western New York image processing workshop, Rochester Institute of Technology, 29 Sept 2006, Rochester, NY, USA

    Google Scholar 

  56. Zhang ZM, Li RY, Wang L (2003) Adaptive watermark scheme with RBF neural networks. In: Proceedings of the IEEE international conference on neural networks and signal processing, vol. 2, pp 1517–1520

    Google Scholar 

  57. Lu W, Lu H, Chung F-L (2006) Robust image watermarking using RBF neural network. In: Wang J et al (eds) Advances in neural networks, vol 3972. Lecture notes in computer science. Springer, Berlin, pp 623–628

    Google Scholar 

  58. Piao C-R, Beack S, Woo D-M, Han S-S (2006) A blind watermarking algorithm based on HVS and RBF neural network for digital image. In: Jiao L et al (eds) Advances in natural computation, vol 4221. Lecture notes in computer science. Springer, Berlin, pp 493–496

    Chapter  Google Scholar 

  59. Zhang Y (2009) Blind watermarking algorithm based on HVS and RBF neural network in DWT domain. WSEAS Trans Comput 8(1):174–183

    Google Scholar 

  60. Li X, Wang R, A video watermarking scheme based on 3D-DWT and neural network. In: Proceedings of the Ninth IEEE international symposium on multimedia, Taichung, Taiwan, R.O.C.

    Google Scholar 

  61. Katzenbeisser S, Petitcolas FAP (eds) Information hiding techniques for steganography and digital watermarking. Artech House, pp 102–103

    Google Scholar 

  62. Cheddad A, Condell J, Curran K, Kevitt PM (2010) Digital image steganography: Survey and analysis of current methods. Sig Process 90(3):727–752

    Article  Google Scholar 

  63. Orlandi C, Piva A, Barni M (2007) Oblivious neural network computing via homomorphic encryption. EURASIP J Inf Secur 1-11, Article ID 37343

    Google Scholar 

  64. Chang Y-C, Lu C-J (2005) Oblivious polynomial evaluation and oblivious neural learning. Theoret Comput Sci 341(1–3):39–54

    Article  Google Scholar 

  65. Gorman RP, Sejnowski TJ (1988) Analysis of hidden units in a layered network trained to classify sonar targets. Neural Netw 1(1):75–89

    Article  Google Scholar 

  66. Barni M, Orlandi C, Piva A (2006) A privacy-preserving protocol for neural-network-based computation. In: Proceedings of the 8th multimedia and security workshop, Geneva, Switzerland, pp 146–151

    Google Scholar 

  67. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

  68. Kerre EE, Nachtegael M (2000) Fuzzy techniques in image processing: techniques and applications. In: Kerre EE, Nachtegael M (eds) Studies in fuzziness and soft computing, vol 52. Springer, Berlin

    Google Scholar 

  69. Tobias OJ, Seara R (2002) Image segmentation by histogram thresholding using fuzzy sets. IEEE Trans Image Process 11(12):1457–1465

    Article  Google Scholar 

  70. di Martino F, Loia V, Perfilieva I, Sessa S (2008) An image coding/decoding method based on direct and inverse fuzzy transforms. Int J Approximate Reasoning 48(1):110–131

    Article  Google Scholar 

  71. Nachtegael M, Van-Der-Weken D, Van-De-Ville M, Kerre EE, Philips W, Lemahieu I (2001) An overview of classical and fuzzy-classical filters for noise reduction. In: Proceeding of 10th international IEEE conference on fuzzy systems FUZZ-IEEE, Melbourne, Australia, pp 3–6

    Google Scholar 

  72. Painter T, Spanias A (2000) Perceptual coding of digital audio. Proc IEEE 88(4):451–513

    Article  Google Scholar 

  73. Delay S (1993) The visible difference predictor: an algorithm for the assessment of image fidelity. In: Watson A (ed) Digital image and human vision, chapter 14. MIT Press, pp 212–236

    Google Scholar 

  74. Watson AB (ed) (1993) Digital images and human vision. MIT Press

    Google Scholar 

  75. Motwani M, Harris Jr FC (2009) Fuzzy perceptual watermarking for ownership verification. In: Proceedings of the 2009 international conference on image processing, computer vision, and pattern recognition, Las Vegas, Nevada

    Google Scholar 

  76. Motwani M, Motwani RC, Harris Jr FC (2009) Wavelet based perceptual mask for images. In: Proceedings of IEEE international conference on image processing, Cairo, Egypt

    Google Scholar 

  77. Tao B, Dickinson B (1997) Adaptive watermarking in DCT domain. In: Proceedings of IEEE international conference on acoustics, speech and signal processing, vol. 14, no. 4, pp 1985–1988

    Google Scholar 

  78. Tao B, Dickinson B, Peterson HA (2000) Adaptive model-driven bit allocation for MPEG video coding. IEEE Trans Circuits Syst Video Technol 10(1):147–157

    Article  Google Scholar 

  79. Mohanty SP, Ramakrishnan KR, Kankanhalli MS (2000) An adaptive DCT domain visible watermarking technique for protection of publicly available images. In: Proceedings of the international conference on multimedia processing and systems. Chennai, India, pp 19–25

    Google Scholar 

  80. Kankanhalli MS, Ramakrishnan KR (1999) Adaptive visible watermarking of images. In: Proceedings of the IEEE international conference on multimedia computing and systems, vol 1. Florence, Italy, pp 568–573

    Google Scholar 

  81. Huang J, Shi YQ (1998) Adaptive Image watermarking scheme based on visual masking. IEE Electron Lett 34(8):748–750

    Article  Google Scholar 

  82. Lou DC, Yin T-L, Chang M-C (2004) Robust digital watermarking using fuzzy inference technique. Int J Creative Commun Innov Technol 32(2) (2004)

    Google Scholar 

  83. Coumou DJ, Athimoottil M (2001) A fuzzy logic approach for digital image watermarking. In: Proceedings of the Western New York image processing workshop

    Google Scholar 

  84. Coumou DJ, Athimoottil M (2004) A fuzzy system solution for digital image watermarking. SPIE Proc 5200:192–196

    Article  Google Scholar 

  85. Lee CH, Lee YK (1999) An adaptive digital image watermarking technique for copyright protection. IEEE Trans Consum Electron 45(4):1005–1015

    Article  Google Scholar 

  86. Hsieh M-S, Tseng D-C (2005) Multiresolution image watermarking using fuzzy inference filter. In: Proceedings of computational intelligence, Alberta, Canada

    Google Scholar 

  87. Hsieh M-S (2001) Wavelet-based image watermarking and compression. PhD dissertation, Institute of Computer Science and Information Engineering, National Central University Chung-li, Taiwan

    Google Scholar 

  88. Chen W-C, Wang M-S (2009) A fuzzy c-means clustering-based fragile watermarking scheme for image authentication. Expert Syst Appl 36(2):1300–1307

    Article  Google Scholar 

  89. Peng H, Wang J, Wang W (2009) Adaptive image watermarking approach based on kernel clustering and HVS. In: Di Gesu V, Pal SK, Petrosino A (eds) Fuzzy logic and applications, vol 5571. Lecture notes in computer science. Springer, Berlin, pp 213–220

    Chapter  Google Scholar 

  90. Chang C-Y, Wang H-J, Pan S-W (2009) A robust DWT-based copyright verification scheme with fuzzy ART. J Syst Softw 82(11):1906–1915

    Article  Google Scholar 

  91. Chang C-Y, Wang H-J, Pan S-W (2007) Robust image hashing scheme based on DWT and fuzzy ART. Technical report, Feng Chia University. http://dspace.lib.fcu.edu.tw/handle/2377/3654Z. Accessed 4 Dec 2009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Pomponiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pomponiu, V., Cavagnino, D., Botta, M. (2018). Data Hiding in the Wild: Where Computational Intelligence Meets Digital Forensics. In: Karampelas, P., Bourlai, T. (eds) Surveillance in Action. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-68533-5_15

Download citation

Publish with us

Policies and ethics