Skip to main content

Improving k-NN Graph Accuracy Using Local Intrinsic Dimensionality

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10609))

Included in the following conference series:

Abstract

The k-nearest neighbor (k-NN) graph is an important data structure for many data mining and machine learning applications. The accuracy of k-NN graphs depends on the object feature vectors, which are usually represented in high-dimensional spaces. Selecting the most important features is essential for providing compact object representations and for improving the graph accuracy. Having a compact feature vector can reduce the storage space and the computational complexity of search and learning tasks. In this paper, we propose NNWID-Descent, a similarity graph construction method that utilizes the NNF-Descent framework while integrating a new feature selection criterion, Support-Weighted Intrinsic Dimensionality, that estimates the contribution of each feature to the overall intrinsic dimensionality. Through extensive experiments on various datasets, we show that NNWID-Descent allows a significant amount of local feature vector sparsification while still preserving a reasonable level of graph accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amsaleg, L., Chelly, O., Furon, T., Girard, S., Houle, M.E., Kawarabayashi, K., Nett, M.: Estimating local intrinsic dimensionality. In: KDD, pp. 29–38 (2015)

    Google Scholar 

  2. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: ESANN (2013)

    Google Scholar 

  3. Brito, M., Chávez, E., Quiroz, A., Yukich, J.: Connectivity of the mutual \(k\)-nearest-neighbor graph in clustering and outlier detection. Stat. Probab. Lett. 35(1), 33–42 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dong, W., Moses, C., Li, K.: Efficient K-nearest neighbor graph construction for generic similarity measures. In: WWW, pp. 577–586 (2011)

    Google Scholar 

  5. Dy, J.G., Brodley, C.E.: Feature selection for unsupervised learning. J. Mach. Learn. Res. 5, 845–889 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam library of object images. Int. J. Comput. Vis. 61(1), 103–112 (2005)

    Article  Google Scholar 

  7. Han, E.-H.S., Karypis, G., Kumar, V.: Text categorization using weight adjusted k-nearest neighbor classification. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS (LNAI), vol. 2035, pp. 53–65. Springer, Heidelberg (2001). doi:10.1007/3-540-45357-1_9

    Chapter  Google Scholar 

  8. Hautamaki, V., Karkkainen, I., Franti, P.: Outlier detection using \(k\)-nearest neighbour graph. In: ICPR, vol. 3, pp. 430–433, August 2004

    Google Scholar 

  9. He, J., Li, M., Zhang, H.J., Tong, H., Zhang, C.: Manifold-ranking based image retrieval. In: ACM MM, pp. 9–16 (2004)

    Google Scholar 

  10. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: NIPS, vol. 186, p. 189 (2005)

    Google Scholar 

  11. Hill, B.M.: A simple general approach to inference about the tail of a distribution. Ann. Stat. 3(5), 1163–1174 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Houle, M.E.: Dimensionality, discriminability, density & distance distributions. In: ICDMW, pp. 468–473 (2013)

    Google Scholar 

  13. Houle, M.E.: Local intrinsic dimensionality I: an extreme-value-theoretic foundation for similarity applications. In: SISAP, pp. 1–16 (2017)

    Google Scholar 

  14. Houle, M.E.: Local intrinsic dimensionality II: multivariate analysis and distributional support. In: SISAP, pp. 1–16 (2017)

    Google Scholar 

  15. Houle, M.E., Ma, X., Oria, V., Sun, J.: Improving the quality of K-NN graphs through vector sparsification: application to image databases. Int. J. Multimedia Inf. Retrieval 3(4), 259–274 (2014)

    Article  Google Scholar 

  16. Houle, M.E., Oria, V., Satoh, S., Sun, J.: Knowledge propagation in large image databases using neighborhood information. In: ACM MM, pp. 1033–1036 (2011)

    Google Scholar 

  17. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  18. Li, Y., Dong, M., Hua, J.: Localized feature selection for clustering. Pattern Recogn. Lett. 29(1), 10–18 (2008)

    Article  Google Scholar 

  19. Lichman, M.: UCI Machine Learning Repository (2013). http://archive.ics.uci.edu/ml

  20. Mitra, P., Murthy, C., Pal, S.K.: Unsupervised feature selection using feature similarity. IEEE TPAMI 24(3), 301–312 (2002)

    Article  Google Scholar 

  21. Qin, D., Gammeter, S., Bossard, L., Quack, T., van Gool, L.: Hello neighbor: accurate object retrieval with \(k\)-reciprocal nearest neighbors. In: CVPR 2011, pp. 777–784, June 2011

    Google Scholar 

  22. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of dimensionality reduction in recommender systems – a case study. Technical report, DTIC Document (2000)

    Google Scholar 

  23. Wang, Z., Liu, Z.: Graph-based KNN text classification. In: FSKD, vol. 5, pp. 2363–2366, August 2010

    Google Scholar 

  24. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 5, 1205–1224 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat. 15(2), 265–286 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

M.E. Houle acknowledges the financial support of JSPS Kakenhi Kiban (A) Research Grant 25240036 and JSPS Kakenhi Kiban (B) Research Grant 15H02753. V. Oria acknowledges the financial support of NSF Research Grant DGE 1565478.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arwa M. Wali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Houle, M.E., Oria, V., Wali, A.M. (2017). Improving k-NN Graph Accuracy Using Local Intrinsic Dimensionality. In: Beecks, C., Borutta, F., Kröger, P., Seidl, T. (eds) Similarity Search and Applications. SISAP 2017. Lecture Notes in Computer Science(), vol 10609. Springer, Cham. https://doi.org/10.1007/978-3-319-68474-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68474-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68473-4

  • Online ISBN: 978-3-319-68474-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics