Skip to main content

Steady and Unsteady Shock Interactions by Shock Fitting Approach

  • Chapter
  • First Online:
Shock Fitting

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Abstract

The numerical solution of shock interactions has been a challenge since the beginning of the computational fluid dynamics age. Different approaches have been introduced with the goal of making the approach either a general purpose one or suitable to solve a specific family of problems. Among them Morettiā€™s floating shock fitting approach has played an important role, especially for unsteady problems, where the mesh resolution needed to accurately solve the problem with other approaches was rather difficult to obtain. In this paper the authors present a review of steady and unsteady problems with shock interactions they have computed using a floating shock fitting approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bilinear interpolation is second order accurate as can be easily shown.

References

  1. Ben-Dor, G.: Shock Wave Reflection Phenomena. Springer, New York (1992)

    Google ScholarĀ 

  2. Marconi, F., Salas, M.: Computation of three dimensional flows about aircraft configurations. Comput. Fluids 1, 185ā€“195 (1973)

    Google ScholarĀ 

  3. Moretti, G.: Thoughts and afterthoughts about shock computations. PIBAL Report 72ā€“37 (1972)

    Google ScholarĀ 

  4. Moretti, G.: The Ī»-scheme. Comput. Fluids 7, 191ā€“205 (1979)

    Google ScholarĀ 

  5. Moretti, G.: Efficient calculation of two-dimensional, unsteady, compressible flows. In: Advanced in Computer Methods for Partial Differential Equations ā€“ VI. IMACS (1987)

    Google ScholarĀ 

  6. Moretti, G.: A technique for integrating two-dimensional euler equations. Comput. Fluids 15(1), 59ā€“75 (1987)

    ArticleĀ  ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  7. Moretti, G.: Efficient Euler solver with many applications. AIAA J. 26(6), 655ā€“660 (1988). https://doi.org/10.2514/3.9950

    ArticleĀ  ADSĀ  Google ScholarĀ 

  8. Moretti, G.: Thirty-six years of shock fitting. Comput. Fluids 31(4ā€“7), 719ā€“723 (2002)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  9. Moretti, G.: Shock-fitting analysis. In: Onofri, M., Paciorri, R. (eds.) Shock fitting: classical techniques, recent developments, and memoirs of Gino Moretti, pp. 3ā€“31. Springer, New York (2017). https://doi.org/10.1007/978-3-319-68427-7_11

    ChapterĀ  Google ScholarĀ 

  10. Moretti, G., Abbett, M.: A time-dependent computational method for blunt body flows. AIAA J. 4(12), 2136ā€“2141 (1966)

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  11. Moretti, G., Di Piano, M.T.: An improved lambda-scheme for one-dimensional flows. Nasa-cr-3712 (1983)

    Google ScholarĀ 

  12. Moretti, G., Valorani, M.: Detection and fitting of two-dimensional shocks. Notes Numer. Fluid Mech. 20, 239ā€“246 (1988)

    ADSĀ  MATHĀ  Google ScholarĀ 

  13. Moretti, G., Marconi, F., Onofri, M.: Shock boundary layer interactions computed by a shock fitting technique. In: Lecture Notes in Physics, vol. 414, pp. 345ā€“350. Springer, Berlin (1993)

    Google ScholarĀ 

  14. Najafi, M., Hejranfar, K., Esfahanian, V.: Application of a shock-fitted spectral collocation method for computing transient high-speed inviscid flows over a blunt nose. J. Comput. Phys. 257, 954ā€“980 (2014). https://doi.org/10.1016/j.jcp.2013.09.037

    ArticleĀ  ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  15. Nasuti, F.: A multi-block shock-fitting technique to solve steady and unsteady compressible flows. In: Armfield, S., Morgan, P., Srinivas, K. (eds.) Computational Fluid Dynamics 2002, pp. 217ā€“222. Springer, Berlin (2003)

    ChapterĀ  Google ScholarĀ 

  16. Nasuti, F., Onofri, M.: Transient flow analysis of nozzle start-up by a shock-fitting technique. In: Unsteady Flows in Aeropropulsion, vol. 40, pp. 127ā€“135. ASME, New York (1994)

    Google ScholarĀ 

  17. Nasuti, F., Onofri, M.: Analysis of unsteady supersonic viscous flows by a shock-fitting technique. AIAA J. 34, 1428ā€“1434 (1996)

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  18. Nasuti, F., Onofri, M.: Viscous and inviscid vortex generation during nozzle flow transients. In: 34th AIAA Aerospace Sciences Meeting, Reno, NV. AIAA Paper 96-0076. AIAA, Washington, DC, USA (1996).

    Google ScholarĀ 

  19. Nasuti, F., Onofri, M.: Viscous and inviscid vortex generation during startup of rocket nozzles. AIAA J. 36, 809ā€“815 (1998)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  20. Nasuti, F., Onofri, M.: Analysis of in-flight behavior of truncated plug nozzles. J. Propuls. Power 17(4), 809ā€“817 (2001)

    ArticleĀ  Google ScholarĀ 

  21. Nasuti, F., Onofri, M.: Shock structure in separated nozzle flows. Shock Waves 19, 229ā€“237 (2009). https://doi.org/10.1007/s00193-008-0173-7

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  22. Onofri, M., Nasuti, F.: Theoretical considerations on shock reflections and their implications on the evaluations of air intake performance. Shock Waves 11(2), 151ā€“156 (2001). https://doi.org/10.1007/PL00004067

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  23. Paciorri, R., Sabetta, F.: Compressibility correction for the Spalart-Allmaras model in free-shear flows. J. Spacecr. Rocket. 40(3), 326ā€“331 (2003)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  24. Paciorri, R., Bonfiglioli, A.: A shock-fitting technique for 2D unstructured grids. Comput. Fluids 38(3), 715ā€“726 (2009). https://doi.org/10.1016/j.compfluid.2008.07.007.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  25. Rawat, P., Zhong, X.: Numerical simulations of strong shock and disturbance interactions using high-order shock-fitting algorithms (2008). In: 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. https://doi.org/10.2514/6.2008-746

  26. Spalart, P., Allmaras, S.: A one-equation turbulence model for aerodynamic flows. La Recherche Aerospatiale 1, 5ā€“23 (1994)

    Google ScholarĀ 

  27. Valorani, M., Nasuti, F., Onofri, M., Buongiorno, C.: Optimal supersonic intake design for air collection engines (ace). Acta Astronaut. 45(12), 729ā€“745 (1999). https://doi.org/10.1016/S0094-5765(99)00185-X

    ArticleĀ  ADSĀ  Google ScholarĀ 

Download references

Acknowledgements

This paper has been prepared in the memory of Gino Moretti, who has been the mentor of authors in studying, developing, and using CFD techniques. The authors are indebted to him for the unique lessons he left to them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Nasuti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nasuti, F., Onofri, M. (2017). Steady and Unsteady Shock Interactions by Shock Fitting Approach. In: Onofri, M., Paciorri, R. (eds) Shock Fitting. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-319-68427-7_2

Download citation

Publish with us

Policies and ethics