Skip to main content

Review of Existing Biomaterials—Method of Material Selection for Specific Applications in Orthopedics

  • Chapter
  • First Online:
Biomaterials in Clinical Practice

Abstract

Biomaterials have emerged as a very important material class for wide application in medicine. Intensive research during the last decade strongly indicates that many health-related problems can be efficiently overcome with these new materials. Quality of life has been significantly increased for patients who need reconstructive surgeries, especially in comparison with old solutions. This paper reviews biomaterials in orthopedics that are used either as a support or substitute for bone tissues, from the aspect of their properties and state-of-the-art results in real clinical cases. Limitations and further directions of research are presented. Metal, ceramic and polymer materials, as well as new composites and new material structures, are reviewed, such as biodegradable porous materials and scaffolds. Nowadays, optimal selection of materials is one of the challenges imposed by the presence of many novel materials that can be used in specific applications. A general method of material selection is presented related to the hip stem and permanent metal biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal A (2014) Implantable zirconia bioceramics for bone repair and replacement: a chronological review. Mater Express 4(1):1–12

    Article  Google Scholar 

  • Adamovic D et al (2009) A choice of materials for implants. In: Proceedings of the 33rd international conference on mechanical production in serbia (in Serbian), Belgrade, June 2009. Faculty of Mechanical Engineering Belgrade, Belgrade, pp 51–60

    Google Scholar 

  • Alvarez K, Nakajima H (2009) Metallic scaffolds for bone regeneration. Materials 2(3):790–832

    Article  Google Scholar 

  • An YH, Draughn RA (eds) (2000) Mechanical testing of bone and the bone-implant interface. CRC Press, New York

    Google Scholar 

  • Antonio G, Roberto DS, Luigi A (2010) Polymer-based composite scaffolds for tissue engineering. J Appl Biomater Biomech 8(2):57–67

    Google Scholar 

  • Ashby MF, Cebon D (2005) Materials selection in mechanical design, 3rd edn. Butterworth-Heinemann, London

    Google Scholar 

  • Ashby MF, Tianjian LU (2003) Metal foams: A survey. Sci Chin 46(6):521–532

    Article  Google Scholar 

  • Ashby MF, Evans AG, Fleck NA (2000) Metal foams: a design guide. Butterworth-Heinemann, London

    Google Scholar 

  • Avérous L, Pollet E (2012) Biodegradable polymers (chapter 2). In: Avérous L, Pollet E (eds) Environmental silicate nano-biocomposites. Springer-Verlag, London, London, pp 13–39

    Chapter  Google Scholar 

  • Aza PN, Aza AH, Aza S (2005) Crystalline bioceramic materials. Bol Soc Esp Ceram Vidrio 44(3):135–145

    Article  Google Scholar 

  • Bahraminasab M, Jahan A (2011) Material selection for femoral component of total knee replacement using comprehensive VIKOR. Mater Des 32(8–9):4471–4477

    Article  Google Scholar 

  • Bahraminasab M, Sahari BB (2013) Shape memory alloys, promising materials in orthopedic applications (chapter 10). In: Fernandes FMB (ed) Shape memory alloys—processing, characterization and applications. InTech, Rijeka, pp 261–278

    Google Scholar 

  • Bakan HI, Korkmaz K (2015) Synthesis and properties of metal matrix composite foams based on austenitic stainless steels–titanium carbonitrides. Mater Des 83:154–158

    Article  Google Scholar 

  • Barrere F, Mahmood TA, Groot K et al (2008) Advanced biomaterials for skeletal tissue regeneration: instructive and smart functions. Mater Sci Eng 59:38–71

    Article  Google Scholar 

  • Ben-Nissan B, Pezzotti G (2002) Bioceramics processing routes and mechanical evaluation—review. J Ceram Soc Jpn 110:601–608

    Article  Google Scholar 

  • Bernkopf M (2007) Sterilisation of bioresorbable polymer implants medical device technology. PubMed 18(3):26–28

    Google Scholar 

  • Billote WG (2006) Ceramic biomaterials. In: Bronzino JD, Peterson DR (eds) Biomedical Engineering Fundamentals. CRC Press, Boca Raton

    Google Scholar 

  • Black J, Hastings G (eds) (1998) Handbook of biomaterial properties. CHAPMAN & HAIL, London

    Google Scholar 

  • Bohner M (2010) Resorbable biomaterials as bone graft substitutes. Mater Today 13(1–2):24–30

    Article  Google Scholar 

  • Bombac D, Brojan M, Fajfar P et al (2007) Review of materials in medical applications. RMZ. Mater Geoenvironment 54(4):471–499

    Google Scholar 

  • Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30(10):546–554

    Article  Google Scholar 

  • Brar HS, Platt MO, Sarntinoranont M et al (2009) Magnesium as a biodegradable and bioabsorbable material for medical implants. JOM 61(9):31–34

    Article  Google Scholar 

  • Brkic S (2013) The application of polymer composites in surgery. Polymers 34:1 (in Croatian)

    Google Scholar 

  • Bronzino J (ed) (2000) The biomedical engineering handbook. Boca Raton, Florida

    Google Scholar 

  • Carter CB, Norton MG (2007) Ceramic materials science and engineering. Springer Science-Business Media, New York

    Google Scholar 

  • Chen Q, Zhu C, Thouas GA (2012) Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Prog Biomater 1(2):1–22

    Google Scholar 

  • Cheng J, Liu B, Wu YH et al (2013) Comparative in vitro study on pure metals (Fe, Mn, Mg, Zn and W) as biodegradable metals. J Mater Sci Technol 29(7):619–627

    Google Scholar 

  • Chevalier J, Gremillard L (2008) Ceramics for medical applications: a picture for the next 20 years. J Eur Ceram Soc 29(7):1245–1255

    Article  Google Scholar 

  • Chu PK, Liu X (eds) (2008) Biomaterials fabrication and processing handbook. CRC PRESS, Taylor & Francis Group, New York

    Google Scholar 

  • Davis JR (ed) (2012) Handbook of materials for medical devices. ASM International, Ohio

    Google Scholar 

  • Davis HE, Leach JK (2008) Hybrid and composite biomaterials in tissue engineering (chapter 10). In: Ashammakhi N (ed) Topics in multifunctional biomaterials and devices, ebook. Tampere University of Technology, Tampere, pp 1–25

    Google Scholar 

  • de Viteri VS, Fuentes E (2013) Titanium and titanium alloys as biomaterials (chapter 5). In: Gegner J (ed) Tribology—fundamentals and advancements. InTech, Rijeka, p 1

    Google Scholar 

  • Dhandayuthapani B, Yoshida Y, Maekawa T et al (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 290602:1–19

    Google Scholar 

  • Disegi JA, Eschbach L (2000) Stainless steel in bone surgery. Injury 31(4):D2–D6

    Article  Google Scholar 

  • Dorozhkin SV (2010) Calcium orthophosphates as bioceramics: state of the art—review. J Funct Biomater 1:22–107

    Article  Google Scholar 

  • Ducheyne P, Qiu Q (1999) Bioactive ceramics: the efect of surface reactivity on bone formation and bone cell function. Biomaterials 20(23–24):2287–2303

    Article  Google Scholar 

  • Eid Y (2013) The myths of trabecular metal: ‘The next best thing to bone’. Egypt Orthoped J 48(4):327–329

    Article  Google Scholar 

  • Fambri L, Migliaresi C, Kesenci K et al (2002) Biodegradable polymers (chapter 4). In: Barbucci R (ed) Integrated biomaterials science. Kluwer Academic/Plenum Publishers, New York, pp 119–170

    Chapter  Google Scholar 

  • Farag MM (1989) Selection of materials and manufacturing processes for engineering design. Prentice Hall, London

    Google Scholar 

  • Fellah M, Assala O, Labaïz M et al (2014) Friction and wear behavior of Ti-6Al-7Nb biomaterial alloy. J Biomater Nanobiotechnol 4:374–384

    Article  Google Scholar 

  • Filetin T (2000) Materials selection for the construction. Faculty of Mechanical Engineering and Naval Arehitecture, Zagreb (in Croatian)

    Google Scholar 

  • Fragassa C, Radovic N, Pavlovic A et al (2016) Comparison of mechanical properties in compacted and spheroidal graphite irons. Tribol Ind 38(1):49–59

    Google Scholar 

  • Freese H, Volas MG, Wood JR (2001) Metallurgy and fabrication; surface and technological properties (chapter 2). In: Brunette DM, Tengvall P, Textor M et al (eds) Titanium in medicine. Springer, Berlin, pp 25–51

    Chapter  Google Scholar 

  • Furth ME, Atala A, Van Dyke ME (2007) Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials 28(34):5068–5073

    Article  Google Scholar 

  • Geetha M, Singh AK, Asokamani R et al (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54(3):397–425

    Article  Google Scholar 

  • Geetha M, Durgalakshmi D, Asokamani R (2010) Biomedical implants: corrosion and its prevention. Recent patents on corrosion science, vol 2. pp 40–54

    Google Scholar 

  • Ghanbarzadeh B, Almasi H (2013) Biodegradable polymers (chapter 6). In: Chamy R (ed) Biodegradation—life of science. InTech, Rijeka, pp 141–185

    Google Scholar 

  • Ginebra MP, Gil F, Planell J (2002) Acrylic bone cements (chapter 20). In: Barbucci R (ed) Integrated biomaterials science. Kluwer Academic/Plenum Publishers, New York, pp 569–584

    Chapter  Google Scholar 

  • Green S (2012) Compounds and composite materials (chapter 3). In: Kurtz S (ed) PEEK biomaterials handbook. William Andrew Publishing, London, pp 23–49

    Chapter  Google Scholar 

  • Gu X, Zheng Y (2010) A review on magnesium alloys as biodegradable materials. Front Mater Sci Chin 4(2):111–115

    Article  Google Scholar 

  • Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Calls Mater 5:1–16

    Article  Google Scholar 

  • Hamadouche M, Sedel L (2000) Ceramics in orthopaedics—review. J Bone Joint Surg 82(8):1095–1099

    Article  Google Scholar 

  • Harvey JA (2006) Smart materials (chapter 11). In: Kutz M (ed) Mechanical engineers’ handbook: materials and mechanical design. Wiley, Hoboken, pp 418–432

    Chapter  Google Scholar 

  • He W, Benson R (2011) Polymeric biomaterials (chapter 4). In: Kutz M (ed) Applied plastics engineering handbook—processing and materials. Elsevier, London, pp 143–193

    Google Scholar 

  • He W, Benson R (2014) Polymeric biomaterials (chapter 4). In: Modjarrad K, Ebnesajjad S (eds) Handbook of polymer applications in medicine and medical devices. Elsevier, London, pp 55–69

    Chapter  Google Scholar 

  • Heimann RB (2002) Materials science of crystalline bioceramics: a review of basic properties and applications. CMU J 1(1):23–46

    Google Scholar 

  • Helmus MN (2002) Biomaterials in the design and reliability of medical devices. Springer, Washington

    Google Scholar 

  • Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74(7):1487–1510

    Article  Google Scholar 

  • Heness G, Ben-Nissan B (2004) Innovative bioceramics. Mater Forum 27:104–114

    Google Scholar 

  • Hermawan H (2012) Biodegradable metals. Springer, Heidelberg, New York

    Book  Google Scholar 

  • Hryniewicz T, Rokosz K, Filippi M (2009) Biomaterial studies on AISI 316L stainless steel after magnetoelectropolishing. Materials 2(1):129–145

    Article  Google Scholar 

  • Hutmacher DW, Schantz JT, Lam CXH et al (2007) State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regenerative Med 1(4):245–260

    Article  Google Scholar 

  • Hyseni A, De Paola S, Minak G et al (2013) Mechanical characterization of ecocomposites. In: Proceedings of 30th Danubia Adria symposium, symposium on advances in experimental mechanics, DAS 30, Code 125164:175–176. Primošten, Croatia, 25–28 Sept 2013

    Google Scholar 

  • Iftekhar A (2009) Biomedical composites (chapter 14). In: Kurtz M (ed) Biomedical engineering and design handbook, vol 1. McGraw-Hill Professional, New York

    Google Scholar 

  • Ignjatovic N, Uskokovic D (2008) Biodegradable composites based on nanocrystalline calcium phosphate and bioresorbable polymers. Adv Appl Ceram 107(3):142–147

    Article  Google Scholar 

  • Jani JM, Leary M, Subic A et al (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113

    Article  Google Scholar 

  • Jaros A, Smola A, Kasperczyk J et al (2010) Biodegradable shape memory polymers for medical purposes. CHEMIK 64(2):87–96

    Google Scholar 

  • Kennedy A (2012) Porous metals and metal foams made from powders (chapter 2). In: Kondoh K (ed) Powder metallurgy. InTech, Rijeka, pp 31–46

    Google Scholar 

  • Kim HM (2003) Ceramic bioactivity and related biomimetic strategy. Curr Opin Solid State Mater Sci 7(4–5):289–299

    Article  Google Scholar 

  • Krajewski A, Ravaglioli A (2002) Bioceramics and biological glasses (chapter 5). In: Barbucci R (ed) Integrated biomaterials science. Kluwer Academic/Plenum Publishers, New York, pp 189–252

    Chapter  Google Scholar 

  • Kurtz S (ed) (2012) PEEK biomaterials handbook. Elsevier, Amsterdam

    Google Scholar 

  • Kurtz S, Devine JN (2007) PEEK Biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28(32):4845–4869

    Article  Google Scholar 

  • Kustas FM, Misra MS (1992) Friction and wear of titanium alloys (chapter 18). In: Henry SD (eds) Friction, lubrication and wear technology. ASM International, pp 1585–1598

    Google Scholar 

  • Kutz M (ed) (2002) Handbook of materials selection. Wiley, New York

    Google Scholar 

  • Kutz M (ed) (2009) UHMWPE biomaterials handbook. Elsevier, London

    Google Scholar 

  • Labarre D, Carreno M (2002) Inflammatory response to polymeric materials (chapter 25). In: Barbucci R (ed) Integrated biomaterials science. Kluwer Academic/Plenum Publishers, New York, pp 691–734

    Chapter  Google Scholar 

  • Leeson MC, Lippitt SB (1993) Thermal aspects of the use of polymethylmethacrylate in large metaphyseal defects in bone. A clinical review and laboratory study 295:239–245

    Google Scholar 

  • Levinea BR, Sporera S, Poggieb RA et al (2006) Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials 27(27):4671–4681

    Article  Google Scholar 

  • Lewis G (1997) Properties of acrylic bone cement: state of the art review. J Biomed Mater 38(2):155–182

    Article  Google Scholar 

  • Li H, Zheng Y, Qin L (2014a) Progress of biodegradable metals. Prog Nat Sci Mater Int 24(5):414–422

    Article  Google Scholar 

  • Li Y, Yang C, Zhao H, Qu S et al (2014b) New developments of Ti-based alloys for biomedical applications—review. Materials 7(3):1709–1800

    Article  Google Scholar 

  • Liu X, Chu PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng 47(3–4):49–121

    Article  Google Scholar 

  • Long M, Rack HJ (1998) Titanium alloys in total joint replacement a materials science perspective—review. Biomaterials 19(18):1621–1639

    Article  Google Scholar 

  • Lu JX, Huang ZW, Tropiano P (2002) Human bio-logical reactions at the interface between bone tissue and polymethylmethacrylate cement. J Mater Sci 13(8):803–809

    Google Scholar 

  • Machado L, Savi M (2003) Medical applications of shape memory alloys. Braz J Med Biol Res 36(6):683–691

    Article  Google Scholar 

  • Mallick S, Tripathi S, Srivastava P (2015) Advancement in scaffolds for bone tissue engineering: a review. IOSR J Pharm Biol Sci 10(1):37–54

    Google Scholar 

  • Manicone PF, Iommetti PR, Raffaelli L (2007) An overview of zirconia ceramics: basic properties and clinical applications—review. J Dent 35(11):819–826

    Article  Google Scholar 

  • Marconi W, Piozzi A (2002) Structure and properties of polymeric materials (chapter 2). In: Barbucci R (ed) Integrated biomaterials science. Kluwer Academic/Plenum Publishers, New York, pp 25–68

    Chapter  Google Scholar 

  • Matassi F, Botti A, Sirleo L et al (2013) Porous metal for orthopedics implants. Clin Cases Min Bone Metab 10(2):111–115

    Google Scholar 

  • Mediaswanti K, Wen C, Ivanova EP (2013) A review on bioactive porous metallic biomaterials. J Biomimetics Biomater Tissue Eng 18:1–8

    Article  Google Scholar 

  • Miao X, Sun D (2010) Graded/gradient porous biomaterials—review. Materials 3(1):26–47

    Article  Google Scholar 

  • Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346

    Article  Google Scholar 

  • Migliaresi C, Pegoretti A (2002) Fundamentals of polymeric composite materials (chapter 3). In: Barbucci R (ed) Integrated biomaterials science. Kluwer Academic/Plenum Publishers, New York, pp 69–114

    Chapter  Google Scholar 

  • Migonney V (ed) (2014) Biomaterials. Wiley-ISTE, New York

    Google Scholar 

  • Mohammed MT, Khan ZA, Siddiquee AN (2014) Beta titanium alloys: the lowest elastic modulus for biomedical applications: a review. Int J Chem Nucl Mater Metall Eng 8(8):772–777

    Google Scholar 

  • Murr LE, Gaytan SM, Medina F et al (2010) Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos Trans R Soc 368(1917):1999–2032

    Article  Google Scholar 

  • Mutlu I, Oktay E (2013) Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments. Mater Sci Eng 33(3):1125–1131

    Article  Google Scholar 

  • Naira LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Polym Biomed Appl 32(8–9):762–798

    Google Scholar 

  • Nasab MB, Hassan MR, Sahari BB (2010) Metallic biomaterials of knee and hip—a review. Trends Biomater Artif Organs 24(2):69–82

    Google Scholar 

  • Niinomi M (1998) Mechanical properties of biomedical titanium alloys. Mater Sci Eng 243(1–2):231–236

    Google Scholar 

  • Niinomi M (2003) Recent research and development in titanium alloys for biomedical applications and healthcare goods—review. Sci Technol Adv Mater 4(5):445–454

    Article  Google Scholar 

  • Niinomi M, Narushima T, Nakai M (eds) (2015a) Advances in metallic biomaterials processing and applications. Springer, Berlin

    Google Scholar 

  • Niinomi M, Narushima T, Nakai M (2015b) Advances in metallic biomaterials tissues. Springer, Berlin

    Google Scholar 

  • O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95

    Article  Google Scholar 

  • Odahara T, Matsumoto H, Chiba A (2008) Mechanical properties of biomedical Co-33Cr-5Mo-0.3 N alloy at elevated temperatures. Mater Trans 49(9):1963–1969

    Google Scholar 

  • Oldani C, Dominguez A (2012) Titanium as a biomaterial for implants (chapter 9). In: Fokter S (ed) Recent advances in arthroplasty. InTech, Rijeka, pp 149–162

    Google Scholar 

  • Ong K, Lovald S, Black J (2014) Orthopaedic biomaterials in research and practice. Florida, Boca Raton

    Book  Google Scholar 

  • Osorio-Hernández JO, Suarez MA, Goodall R et al (2014) Manufacturing of open-cell Mg foams by replication process and mechanical properties. Mater Des 64:136–141

    Article  Google Scholar 

  • Parida P, Behera A, Mishra SC (2012) Classification of biomaterials used in medicine. Int J Adv Appl Sci 1(3):31–35

    Google Scholar 

  • Park JB, Bronzino JD (eds) (2003) Biomaterials: principles and applications. Florida, Boca Raton

    Google Scholar 

  • Park JB, Lakes RS (2007) Biomaterials—an introduction. Springer Science+Business Media, New York

    Google Scholar 

  • Park H, Temenoff JS, Mikos AG (2007) Biodegradable orthopedic implants (chapter 4). In: Felix B, Farach-Carson F, Mikos AG (eds) Engineering of functional skeletal tissues. Springer, London, pp 55–68

    Chapter  Google Scholar 

  • Pelton AR, Stöckel D, Duerig TW (1999) Medical uses of nitinol. Proc Int Symp Shape Mem Mater Held Kanazawa 327–328:63–70

    Google Scholar 

  • Peters ST (1998) Handbook of composites. Chapman & Hall, London

    Book  Google Scholar 

  • Piconi C, Maccauro G (1999) Zirconia as a ceramic biomaterial—review. Biomaterials 20(1):1–25

    Article  Google Scholar 

  • Piconi C, Maccauro G, Muratori F et al (2003) Alumina and zirconia ceramics in joint replacements—review. J Appl Biomater Biomech 1:19–32

    Google Scholar 

  • Pilliar RM (2009) Metallic biomaterials In: Narayan R (ed) Biomedical materials. Springer Science+Business Media, LLC. doi:10.1007/978-0-387-84872-3-2

  • Pirhonen E (2006) Fibres and composites for potential biomaterials applications. Dissertation, Tampere University of Technology

    Google Scholar 

  • Polyn LV (2008) Bone cement: chemical composition and chemistry (chapter 2). In: Sanjukta D (ed) Orthopaedic bone cements. Woodhead Publishing, Boca Raton, pp 183–200

    Google Scholar 

  • Rahman HSA, Choudhury D, Osman NAA et al (2013) In vivo and in vitro outcomes of alumina, zirconia and their composited ceramic-on-ceramic hip joints. J Ceram Soc Jpn 121(4):382–387

    Article  Google Scholar 

  • Rakovic D, Uskokovic D (eds) (2010) Biomaterials. Institute of Technical Sciences of the Serbian Academy of Arts and Sciences, Belgrade

    Google Scholar 

  • Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: review. Compos Sci Technol 61(9):1189–1224

    Article  Google Scholar 

  • Ratner BD, Hoffman SA, Schoen JF et al (2012) Biomaterials science: an introduction to materials in medicine, 3rd edn. Elsevier Academic Press, London

    Google Scholar 

  • Rautray TR, Narayanan R, Kim K (2011) Ion implantation of titanium based biomaterials. Prog Mater Sci 56(8):1137–1177

    Article  Google Scholar 

  • Ristic B, Popovic Z, Adamovic D et al (2010) Selection of biomaterials in orthopedic surgery. Vojnosanit Pregl 67(10):847–855

    Article  Google Scholar 

  • Rivard J, Brailovski V, Dubinskiy S et al (2014) Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications. Mater Sci Eng 45:421–433

    Article  Google Scholar 

  • Robinson RP, Wright TM, Burstein AH (1981) Mechanical properties of poly (methyl methacrylate) bone cements. J Biomed Mater Res 15(2):203–208

    Article  Google Scholar 

  • Rodríguez B, Romero A, Soto O et al (2004) Biomaterials for orthopedics. Appl Eng Mech Med 1:1–25

    Google Scholar 

  • Roeder RK, Conrad TL (2012) Bioactive polyaryletherketone composites (chapter 7). In: Kurtz S (ed) PEEK biomaterials handbook. Elsevier, Amsterdam, pp 163–179

    Google Scholar 

  • Ryan G, Pandit A, Panagiotis Apatsidis D (2006) Fabrication methods of porous metals for use in orthopaedic applications—review. Biomaterials 27(13):2651–2670

    Article  Google Scholar 

  • Sáenz A, Rivera-Muñoz E, Brostow W et al (1999) Ceramic biomaterials: an introductory overview. J Mater Educ 21(5–6):297–306

    Google Scholar 

  • Salernitano E, Migliaresi C (2003) Composite materials for biomedical applications: a review. J Appl Biomater Biomech 1:3–18

    Google Scholar 

  • Santos AR (2010) Bioresorbable polymers for tissue engineering (chapter 11). In: Eberli D (ed) Tissue engineering. InTech, Rijeka, pp 225–246

    Google Scholar 

  • Schieker M, Seitz H, Drosse I et al (2006) Biomaterials as scaffold for bone tissue engineering. Eur J Trauma 32(2):114–124

    Article  Google Scholar 

  • Schuessler A, Piper A (2004) Boundaries for the use of Nitinol in medical applications. In: Mertmann S (ed) Proceedings of the international conference on shape memory and superelastic technologies, ASM International, Kurhaus Baden-Baden, 3–7 Oct 2004, pp 563–571

    Google Scholar 

  • Schwartz M (ed) (2002) Encyclopedia of smart materials. Wiley, New York

    Google Scholar 

  • Seifalian A, Mel A, Kalaskar DM (2014) Nanomedicine. One Central Press, London, pp 112–130

    Google Scholar 

  • Shi D (ed) (2006) Introduction to biomaterials. Tsinghua University Press Beijing and World Scientific Publishing Singapore, Beijing

    Google Scholar 

  • Shoichet M (2010) Polymer scaffolds for biomaterials applications. Macromolecules 43(2):581–591

    Article  Google Scholar 

  • Sinha RK (ed) (2002) Hip replacement—current trends and controversies. Marcel Dekker, New York

    Google Scholar 

  • Sljivic M, Stanojevic M, Durdevic D et al (2016) Implemenation of FEM and rapid prototyping in maxillofacial surgery. FME Trans 44(4):422–429

    Article  Google Scholar 

  • Spector M (2006) Biomaterials-based tissue engineering and regenerative medicine solutions to musculoskeletal problems. Swiss Med Wkly 136:293–301

    Google Scholar 

  • Stanczyk M, Rietbergen B (2004) Thermal analysis of bone cement polymerisation at the cement–bone interface. J Biomech 37(12):1803–1810

    Article  Google Scholar 

  • Steinberg EL, Rath E, Shlaifer A et al (2013) Carbon fiber reinforced PEEK optima—a composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater 17:221–228

    Article  Google Scholar 

  • Tapash RR, Narayanan R, Kim KH (2011) Ion implantation of titanium based biomaterials. Prog Mater Sci 56:1137–1177

    Article  Google Scholar 

  • Teoh SH (2000) Fatigue of biomaterials: a review. Int J Fatigue 22(10):825–837

    Article  Google Scholar 

  • Teoh SH (2004) Engineering materials for biomedical applications. World Scientific Publishing Co. Pte. Ltd., Singapore

    Google Scholar 

  • Thamaraiselvi TV, Trends R (2004) Biological evaluation of bioceramic materials—a review. Biomater Artif Cells Artif Organs 18(1):9–17

    Google Scholar 

  • Tian H, Tang Z, Zhuang X et al (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37(2):237–280

    Article  Google Scholar 

  • Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. Polym Phys 49(12):832–864

    Article  Google Scholar 

  • Vişan S, Popescu RF (2011) Biomaterials. The behavior of stainless steel as a biomaterial. Economia Seria Manag 14(1):177–183

    Google Scholar 

  • Wang M (2006) Composite scaffolds for bone tissue engineering. Am J Biochem Biotechnol 2(2):80–84

    Article  Google Scholar 

  • Wang S, Ge S (2007) The mechanical property and tribological behavior of UHMWPE: effect of molding pressure. Wear 263(7–12):949–956

    Article  Google Scholar 

  • Webb JCJ, Spencer RF (2007) The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. J Bone Joint 89(7):851–857

    Article  Google Scholar 

  • Wise DL (ed) (2000) Biomaterials and bioengineering handbook. CRC PRESS, Taylor & Francis Group, New York

    Google Scholar 

  • Wnek GE, Bowlin GI (eds) (2008) Encyclopedia of biomaterials and biomedical engineering. Informa Healthcare, New York

    Google Scholar 

  • Wong J, Bronzino J (eds) (2007) Biomaterials. CRC PRESS Taylor & Francis Group, New York

    Google Scholar 

  • Yaszemski M, Trantolo D, Lewandrowski K et al (eds) (2004) Biomaterials in orthopedics. CRC PRESS Taylor & Francis Group, New York

    Google Scholar 

  • Yoshikawa H, Tamai N, Murase T (2009) Interconnected porous hydroxyapatite ceramics for bone tissue engineering—review. J R Soc Interface 6:341–348

    Article  Google Scholar 

  • Yusop AH, Bakir AA, Shaharom NA et al (2012) Porous biodegradable metals for hard tissue scaffolds: a review. Int J Biomater 2012:1–10

    Article  Google Scholar 

  • Zhao J, Fu T, Han Y et al (2003) Reinforcing hydroxyapatite/thermosetting epoxy composite with 3-D carbon fiber fabric through RTM processing. Mater Lett 58(1–2):163–168

    Google Scholar 

  • Zheng YF, Gu XN, Witte F (2014) Biodegradable metals. Mater Sci Eng R 77:1–34

    Article  Google Scholar 

  • Zhou Y, Niinomi M, Akahori T et al (2007) Comparison of various properties between titanium-tantalum alloy and pure titanium for biomedical applications. Mater Trans 48(3):380–384

    Google Scholar 

  • Zivic F, Babic M, Mitrovic S et al (2011) Continuous control as alternative route for wear monitoring by measuring penetration depth during linear reciprocating sliding of Ti6Al4V alloy. J Alloy Compd 509:5748–5754

    Article  Google Scholar 

  • Zivic F, Babic M, Grujovic N et al (2012) Effect of vacuum-treatment on deformation properties of PMMA bone cement. J Mech Behav Biomed Mater 5:129–138

    Article  Google Scholar 

  • Zivic F, Babic M, Grujovic N et al (2013) Influence of loose PMMA bone cement particles on the corrosion assisted wear of the orthopaedic AISI 316LVM stainless steel during reciprocating sliding. Wear 300:65–77

    Article  Google Scholar 

  • Zivkovic I, Fragassa C, Pavlovic A et al (2017) Influence of moisture absorption on the impact properties of flax, basalt and hybrid flax/basalt fiber reinforced green composites. Compos B Eng 111:148–164

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by research grants from the Ministry of Science and Technological Development, Serbia, project no. TR 32036 and TR 35021, for a period 2011–2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Zivic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Adamovic, D., Ristic, B., Zivic, F. (2018). Review of Existing Biomaterials—Method of Material Selection for Specific Applications in Orthopedics. In: Zivic, F., Affatato, S., Trajanovic, M., Schnabelrauch, M., Grujovic, N., Choy, K. (eds) Biomaterials in Clinical Practice . Springer, Cham. https://doi.org/10.1007/978-3-319-68025-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68025-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68024-8

  • Online ISBN: 978-3-319-68025-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics