Skip to main content

Multi-Parametric Imaging of Hypoxia and Cell Cycle in Intestinal Organoid Culture

  • Chapter
  • First Online:
Multi-Parametric Live Cell Microscopy of 3D Tissue Models

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1035))

Abstract

Dynamics of oxygenation of tissue and stem cell niches are important for understanding physiological function of the intestine in normal and diseased states. Only a few techniques allow live visualization of tissue hypoxia at cellular level and in three dimensions. We describe an optimized protocol, which uses cell-penetrating O2-sensitive probe, Pt-Glc and phosphorescence lifetime imaging microscopy (PLIM), to analyze O2 distribution in mouse intestinal organoids. Unlike the other indirect and end-point hypoxia stains, or point measurements with microelectrodes, this method provides high-resolution real-time visualization of O2 in organoids. Multiplexing with conventional fluorescent live cell imaging probes such as the Hoechst 33342-based FLIM assay of cell proliferation, and immunofluorescence staining of endogenous proteins, allows analysis of key physiologic parameters under O2 control in organoids. The protocol is useful for gastroenterology and physiology of intestinal tissue, hypoxia research, regenerative medicine, studying host-microbiota interactions and bioenergetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lopez-Lazaro M (2009) Role of oxygen in cancer: looking beyond hypoxia. Anti Cancer Agents Med Chem 9(5):517–525

    Article  CAS  Google Scholar 

  2. Sung HJ, Ma W, Starost MF, Lago CU, Lim PK, Sack MN et al (2011) Ambient oxygen promotes tumorigenesis. PLoS One 6(5):e19785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60

    Article  CAS  PubMed  Google Scholar 

  4. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498(7452):99–103

    Article  CAS  PubMed  Google Scholar 

  5. Rigottier-Gois L (2013) Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis. ISME J 7(7):1256–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schaffer K, Taylor CT (2015) The impact of hypoxia on bacterial infection. FEBS J 282(12):2260–2266

    Article  CAS  PubMed  Google Scholar 

  7. Jennewein J, Matuszak J, Walter S, Felmy B, Gendera K, Schatz V et al (2015) Low-oxygen tensions found in Salmonella-infected gut tissue boost Salmonella replication in macrophages by impairing antimicrobial activity and augmenting Salmonella virulence. Cell Microbiol 17(12):1833–1847

    Article  CAS  PubMed  Google Scholar 

  8. Marteyn B, West NP, Browning DF, Cole JA, Shaw JG, Palm F et al (2010) Modulation of Shigella virulence in response to available oxygen in vivo. Nature 465(7296):355–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zheng L, Kelly CJ, Colgan SP (2015) Physiologic hypoxia and oxygen homeostasis in the healthy intestine. Am J Phys Cell Phys 309(6):C350–C360

    Article  CAS  Google Scholar 

  10. Wolfbeis OS (2015) Luminescent sensing and imaging of oxygen: fierce competition to the Clark electrode. BioEssays 37(8):921–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roussakis E, Li Z, Nichols AJ, Evans CL (2015) Oxygen-sensing methods in biomedicine from the macroscale to the microscale. Angew Chem Int Ed 54(29):8340–8362

    Article  CAS  Google Scholar 

  12. Papkovsky DB, Dmitriev RI (2013) Biological detection by optical oxygen sensing. Chem Soc Rev 42(22):8700–8732

    Article  CAS  PubMed  Google Scholar 

  13. Krohn KA, Link JM, Mason RP (2008) Molecular imaging of hypoxia. J Nucl Med 49(Suppl 2):129S–148S

    Article  CAS  PubMed  Google Scholar 

  14. Devor A, Sakadzic S, Srinivasan VJ, Yaseen MA, Nizar K, Saisan PA et al (2012) Frontiers in optical imaging of cerebral blood flow and metabolism. J Cereb Blood Flow Metab 32(7):1259–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dmitriev RI, Papkovsky DB (2012) Optical probes and techniques for O2 measurement in live cells and tissue. Cell Mol Life Sci 69(12):2025–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Quaranta M, Borisov SM, Klimant I (2012) Indicators for optical oxygen sensors. Bioanal Rev 4(2-4):115–157

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dmitriev RI, Papkovsky DB (2015) Intracellular probes for imaging oxygen concentration: how good are they? Methods Appl Fluoresc 3(3):034001

    Article  Google Scholar 

  18. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ et al (2015) Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17(5):662–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Albenberg L, Esipova TV, Judge CP, Bittinger K, Chen J, Laughlin A et al (2014) Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota in humans and mice. Gastroenterology 147(5):1055–63.e8

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dmitriev R, Borisov S, Kondrashina A, Pakan JP, Anilkumar U, Prehn JM et al (2015) Imaging oxygen in neural cell and tissue models by means of anionic cell-permeable phosphorescent nanoparticles. Cell Mol Life Sci 72(2):367–381

    Article  CAS  PubMed  Google Scholar 

  21. Dmitriev RI, Borisov SM, Jenkins J, Papkovsky DB (2015) Multi-parametric imaging of tumor spheroids with ultra-bright and tunable nanoparticle O2 probes. In: Proceedings SPIE

    Google Scholar 

  22. Dmitriev RI, Zhdanov AV, Nolan YM, Papkovsky DB (2013) Imaging of neurosphere oxygenation with phosphorescent probes. Biomaterials 34(37):9307–9317

    Article  CAS  PubMed  Google Scholar 

  23. Zhdanov AV, Golubeva AV, Okkelman IA, Cryan JF, Papkovsky D (2015) Imaging of oxygen gradients in giant umbrella cells: an ex vivo PLIM study. Am J Phys Cell Phys 309(7):C501–C5C9

    Article  CAS  Google Scholar 

  24. Jenkins J, Borisov SM, Papkovsky DB, Dmitriev RI (2016) Sulforhodamine nanothermometer for multiparametric fluorescence lifetime imaging microscopy. Anal Chem 88(21):10566–10572

    Article  CAS  PubMed  Google Scholar 

  25. Zhdanov AV, Okkelman IA, Golubeva AV, Doerr B, Hyland NP, Melgar S et al (2017) Quantitative analysis of mucosal oxygenation using ex vivo imaging of healthy and inflamed mammalian colon tissue. Cell Mol Life Sci 74(1):141–151

    Article  CAS  PubMed  Google Scholar 

  26. Dmitriev RI, Kondrashina AV, Koren K, Klimant I, Zhdanov AV, Pakan JMP et al (2014) Small molecule phosphorescent probes for O2 imaging in 3D tissue models. Biomater Sci 2(6):853–866

    Article  CAS  Google Scholar 

  27. James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92(2):897–965

    Article  CAS  PubMed  Google Scholar 

  28. Okkelman IA, Dmitriev RI, Foley T, Papkovsky DB (2016) Use of fluorescence lifetime imaging microscopy (FLIM) as a timer of cell cycle S phase. PLoS One 11(12):e0167385

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ponsioen B, Snippert HJ (2017) Cancer systems biology: live imaging of intestinal tissue in health and disease. Curr Opin Syst Biol 2:19–28

    Article  Google Scholar 

  30. Leushacke M, Barker N (2014) Ex vivo culture of the intestinal epithelium: strategies and applications. Gut 63(8):1345–1354

    Article  CAS  PubMed  Google Scholar 

  31. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE et al (2009) Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265

    Article  CAS  PubMed  Google Scholar 

  32. Ootani A, Li X, Sangiorgi E, Ho QT, Ueno H, Toda S et al (2009) Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med 15(6):701–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pastuła A, Middelhoff M, Brandtner A, Tobiasch M, Höhl B, Nuber AH et al (2015) Three-dimensional gastrointestinal organoid culture in combination with nerves or fibroblasts: a method to characterize the gastrointestinal stem cell niche. Stem Cells Int 2015:3710836

    Google Scholar 

  34. McCracken KW, Catá EM, Crawford CM, Sinagoga KL, Schumacher M, Rockich BE et al (2014) Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516:400–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S et al (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141(5):1762–1772

    Article  CAS  PubMed  Google Scholar 

  36. Mahe MM, Aihara E, Schumacher MA, Zavros Y, Montrose MH, Helmrath MA et al (2013) Establishment of gastrointestinal epithelial organoids. Curr Protoc Mouse Biol 3:217–240

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang YG, Wu S, Xia Y, Sun J (2014) Salmonella-infected crypt-derived intestinal organoid culture system for host–bacterial interactions. Phys Rep 2(9):e12147

    Article  Google Scholar 

  38. Bermudez-Brito M, Plaza-Díaz J, Fontana L, Muñoz-Quezada S, Gil A (2013) In vitro cell and tissue models for studying host–microbe interactions: a review. Br J Nutr 109(S2):S27–S34

    Article  CAS  PubMed  Google Scholar 

  39. Lukovac S, Belzer C, Pellis L, Keijser BJ, de Vos WM, Montijn RC et al (2014) Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. MBio 5(4):e01438–e01414

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yin Y, Bijvelds M, Dang W, Xu L, van der Eijk AA, Knipping K et al (2015) Modeling rotavirus infection and antiviral therapy using primary intestinal organoids. Antivir Res 123:120–131

    Article  CAS  PubMed  Google Scholar 

  41. Forbester JL, Goulding D, Vallier L, Hannan N, Hale C, Pickard D et al (2015) The interaction of Salmonella enterica Serovar Typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infect Immun 83(7):2926–2934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Onuma K, Ochiai M, Orihashi K, Takahashi M, Imai T, Nakagama H et al (2013) Genetic reconstitution of tumorigenesis in primary intestinal cells. Proc Natl Acad Sci 110(27):11127–11132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y et al (2015) Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 21:256–262

    CAS  PubMed  Google Scholar 

  44. Mahnke A, Meier RJ, Schatz V, Hofmann J, Castiglione K, Schleicher U et al (2014) Hypoxia in leishmania major-skin lesions impairs the NO-dependent leishmanicidal activity of macrophages. J Invest Dermatol 134(9):2339–2346

    Article  CAS  PubMed  Google Scholar 

  45. Rodansky ES, Johnson LA, Huang S, Spence JR, Higgins PD (2015) Intestinal organoids: a model of intestinal fibrosis for evaluating anti-fibrotic drugs. Exp Mol Pathol 98(3):346–351

    Article  CAS  PubMed  Google Scholar 

  46. Liu J, Walker NM, Ootani A, Strubberg AM, Clarke LL (2015) Defective goblet cell exocytosis contributes to murine cystic fibrosis–associated intestinal disease. J Clin Invest 125(3):1056–1068

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wen Y-A, Li X, Goretsky T, Weiss HL, Barrett TA, Gao T (2015) Loss of PHLPP protects against colitis by inhibiting intestinal epithelial cell apoptosis. Biochim Biophys Acta 1852(10):2013–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yan KS, Chia LA, Li X, Ootani A, Su J, Lee JY et al (2012) The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci 109(2):466–471

    Article  CAS  PubMed  Google Scholar 

  49. Okamoto R, Watanabe M (2015) Role of epithelial cells in the pathogenesis and treatment of inflammatory bowel disease. J Gastroenterol 51(1):1–11

    Google Scholar 

  50. Grant CN, Mojica SG, Sala FG, Hill JR, Levin DE, Speer AL et al (2015) Human and mouse tissue-engineered small intestine both demonstrate digestive and absorptive function. Am J Phys 308(8):G664–GG77

    CAS  Google Scholar 

  51. Dmitriev RI, Borisov SM, Düssmann H, Sun S, Müller BJ, Prehn J et al (2015) Versatile conjugated polymer nanoparticles for high-resolution O2 imaging in cells and 3D tissue models. ACS Nano 9(5):5275–5288

    Article  CAS  PubMed  Google Scholar 

  52. Jahn K, Buschmann V, Hille C (2015) Simultaneous fluorescence and phosphorescence lifetime imaging microscopy in living cells. Sci Rep 5:14334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fujii M, Matano M, Nanki K, Sato T (2015) Efficient genetic engineering of human intestinal organoids using electroporation. Nat Protoc 10(10):1474–1485

    Article  CAS  PubMed  Google Scholar 

  54. Dmitriev R, Papkovsky D (2015) Multi-parametric O2 imaging in three-dimensional neural cell models with the phosphorescent probes. Methods Mol Biol 1254:55–71

    Article  CAS  PubMed  Google Scholar 

  55. Jenkins J, Dmitriev RI, Morten K, McDermott KW, Papkovsky DB (2015) Oxygen-sensing scaffolds for 3-dimensional cell and tissue culture. Acta Biomater 16(0):126–135

    Article  CAS  PubMed  Google Scholar 

  56. Stern O, Volmer M (1919) Über die abklingzeit der fluoreszenz. Phys Z 20:183–188

    CAS  Google Scholar 

  57. Carraway E, Demas J, DeGraff B, Bacon J (1991) Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes. Anal Chem 63(4):337–342

    Article  CAS  Google Scholar 

  58. Borisov SM, Klimant I (2007) Ultrabright oxygen optodes based on cyclometalated iridium (III) coumarin complexes. Anal Chem 79(19):7501–7509

    Article  CAS  PubMed  Google Scholar 

  59. Foster KA, Galeffi F, Gerich FJ, Turner DA, Müller M (2006) Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration. Prog Neurobiol 79(3):136–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Arena ET, Rueden CT, Hiner MC, Wang S, Yuan M, Eliceiri KW (2016) Quantitating the cell: turning images into numbers with ImageJ. Wiley Interdiscip Rev Dev Biol 6(2). https://doi.org/10.1002/wdev.260

Download references

Acknowledgments

This work was supported by Science Foundation Ireland (SFI) grants 13/SIRG/2144 (RID) and 12/RC/2276 (IAO and DBP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruslan I. Dmitriev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Okkelman, I.A., Foley, T., Papkovsky, D.B., Dmitriev, R.I. (2017). Multi-Parametric Imaging of Hypoxia and Cell Cycle in Intestinal Organoid Culture. In: Dmitriev, R. (eds) Multi-Parametric Live Cell Microscopy of 3D Tissue Models. Advances in Experimental Medicine and Biology, vol 1035. Springer, Cham. https://doi.org/10.1007/978-3-319-67358-5_6

Download citation

Publish with us

Policies and ethics