Skip to main content

A Cut-Free Cyclic Proof System for Kleene Algebra

  • Conference paper
  • First Online:
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10501))

Abstract

We introduce a sound non-wellfounded proof system whose regular (or ‘cyclic’) proofs are complete for (in)equations between regular expressions. We achieve regularity by using hypersequents rather than usual sequents, with more structure in the succedent, and relying on the discreteness of rational languages to drive proof search. By inspection of the proof search space we extract a PSpace bound for the system, which is optimal for deciding such (in)equations.

An extended version of this abstract is available on HAL [12]. This work was supported by the European Research Council (ERC) under the Horizon 2020 programme (CoVeCe, grant agreement No. 678157) and the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here we write \(x \le y\) as a shorthand for \(x+y = y\).

  2. 2.

    This logic is non-commutative because there is no exchange rule, and intuitionistic since there is exactly one formula on the right-hand side.

  3. 3.

    Note that atomicity of e really is required for this, even in the usual rational language model. For instance, we have \({\mathcal L}(a^* a b )\subseteq {\mathcal L}(a^* b )\), but \({\mathcal L}(ab) \nsubseteq {\mathcal L}(b)\).

  4. 4.

    Strictly speaking, we should bracket \(e^n\) as \(e(e(\cdots (ee)))\) and set \(e^0\) to 1.

  5. 5.

    Here we construe multisets as mappings from elements to their multiplicity.

  6. 6.

    A priori, this could still be exponentially many in the size of the end-sequent.

  7. 7.

    Notice that right logical rules do not branch.

  8. 8.

    This argument is akin to applying a cut, which is sound since we are only applying it once, and at the meta-level.

  9. 9.

    Here we mean in the sense that it is identical to a descendant, as in Lemma 20.

  10. 10.

    Notice that the \(*\) rules here correspond in fact to an alternative fixed point definition of \(e^*\): \(\mu x . (1 + e + xx)\).

  11. 11.

    Notice also that while it would be natural to enrich the antecedent structure for \(\cap \) as we did in succedents for \(+\), there is a difficult asymmetry in that \(x(y+z) = xy + xz\) but \(x(y\cap z) \lneq xy \cap xz\).

  12. 12.

    Note that the broader problem of whether cyclic proofs can be simulated by ‘inductive’ proofs for a certain framework has no known general solution, cf. [6].

References

  1. Anderson, C.J., Foster, N., Guha, A., Jeannin, J.-B., Kozen, D., Schlesinger, C., Walker, D.: NetKAT: semantic foundations for networks. In: Proceedings of the POPL, pp. 113–126. ACM (2014)

    Google Scholar 

  2. Angus, A., Kozen, D.: Kleene algebra with tests and program schematology. Technical report TR2001-1844, CS Department, Cornell University, July 2001

    Google Scholar 

  3. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton constructions. TCS 155(2), 291–319 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congruence. In: Proceedings of the POPL, pp. 457-468. ACM (2013)

    Google Scholar 

  5. Braibant, T., Pous, D.: An efficient Coq tactic for deciding Kleene algebras. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 163–178. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14052-5_13

    Chapter  Google Scholar 

  6. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J. Log. Comput. 21(6), 1177–1216 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brünnler, K., Studer, T.: Syntactic cut-elimination for common knowledge. Ann. Pure Appl. Log. 160(1), 82–95 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brünnler, K., Studer, T.: Syntactic cut-elimination for a fragment of the modal \(\mu \)-calculus. Ann. Pure Appl. Log. 163(12), 1838–1853 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Buss, S.R.: An introduction to proof theory. Handb. Proof Theory 137, 1–78 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Buszkowski, W.: On action logic: equational theories of action algebras. J. Log. Comput. 17(1), 199–217 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London (1971)

    MATH  Google Scholar 

  12. Das, A., Pous, D.: A cut-free cyclic proof system for Kleene algebra (2017). Full version of this extended abstract, with appendix https://hal.archives-ouvertes.fr/hal-01558132/

  13. Dax, C., Hofmann, M., Lange, M.: A proof system for the linear time \(\mu \)-calculus. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 273–284. Springer, Heidelberg (2006). doi:10.1007/11944836_26

    Chapter  Google Scholar 

  14. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun. ACM 22(8), 465–476 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  15. Doumane, A., Baelde, D., Hirschi, L., Saurin, A.: Towards completeness via proof search in the linear time \(\mu \)-calculus: the case of Büchi inclusions. In: Proceedings of the LICS, pp. 377–386. ACM (2016)

    Google Scholar 

  16. Girard, J.-Y.: Linear logic. TCS 50, 1–102 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hoare, C.A.R.T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 399–414. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04081-8_27

    Chapter  Google Scholar 

  18. Hopcroft, J.E., Karp, R.M.: A linear algorithm for testing equivalence of finite automata. Technical report 114, Cornell University (1971)

    Google Scholar 

  19. Jipsen, P.: From semirings to residuated Kleene lattices. Studia Logica 76(2), 291–303 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Automata Studies, pp. 3–41. Princeton University Press (1956)

    Google Scholar 

  21. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. In: Proceedings of the LICS, pp. 214–225. IEEE (1991)

    Google Scholar 

  22. Kozen, D.: On action algebras. In: van Eijck, J., Visser, A. (eds.) Logic and Information Flow, pp. 78–88. MIT Press (1994)

    Google Scholar 

  23. Kozen, D.: Kleene algebra with tests. Trans. Program. Lang. Syst. 19(3), 427–443 (1997)

    Article  MATH  Google Scholar 

  24. Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM Trans. Comput. Log. 1(1), 60–76 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kozen, D., Patron, M.-C.: Certification of compiler optimizations using Kleene algebra with tests. In: Lloyd, J., et al. (eds.) CL 2000. LNCS, vol. 1861, pp. 568–582. Springer, Heidelberg (2000). doi:10.1007/3-540-44957-4_38

    Chapter  Google Scholar 

  26. Krauss, A., Nipkow, T.: Proof pearl: regular expression equivalence and relation algebra. JAR 49(1), 95–106 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Krob, D.: A complete system of B-rational identities. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 60–73. Springer, Heidelberg (1990). doi:10.1007/BFb0032022

    Chapter  Google Scholar 

  28. Krob, D.: Complete systems of B-rational identities. TCS 89(2), 207–343 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lambek, J.: The mathematics of sentence structure. Am. Math. Monthly 65, 154–170 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  30. Palka, E.: An infinitary sequent system for the equational theory of *-continuous action lattices. Fundam. Inform. 295-309 (2007)

    Google Scholar 

  31. Pous, D.: Kleene algebra with tests and coq tools for while programs. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 180–196. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39634-2_15

    Chapter  Google Scholar 

  32. Pratt, V.: Action logic and pure induction. In: Eijck, J. (ed.) JELIA 1990. LNCS, vol. 478, pp. 97–120. Springer, Heidelberg (1991). doi:10.1007/BFb0018436

    Chapter  Google Scholar 

  33. Schütte, K.: Proof Theory. Grundlehren der mathematischen Wissenschaften, vol. 225. Sprigner, Heidelberg (1977). Translation of Beweistheorie, 1968

    MATH  Google Scholar 

  34. Wurm, C.: Kleene algebras, regular languages and substructural logics. In: Proceedings of the GandALF, EPTCS, pp. 46–59 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Pous .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Das, A., Pous, D. (2017). A Cut-Free Cyclic Proof System for Kleene Algebra. In: Schmidt, R., Nalon, C. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2017. Lecture Notes in Computer Science(), vol 10501. Springer, Cham. https://doi.org/10.1007/978-3-319-66902-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66902-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66901-4

  • Online ISBN: 978-3-319-66902-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics