Skip to main content

Zooming on Aerial Survey

  • Chapter
  • First Online:
Small Flying Drones

Abstract

The aim of this chapter is to provide a general overview about the main components of a developed UAS mapping system, the survey, and processing procedure. At first (4.1), a brief introduction is given about basic operational elements and accessories of UAS. Then, recent camera/sensor technologies allowing various survey solutions are going to be discussed. Once these hardware components are presented, the detailed workflow of a basic UAV-based mapping procedure is described (4.2). A further discussion focuses not only on the analytical or planning phases but also on providing useful information on the operational and processing parts as well (4.3). Then, there comes image acquisition and project planning (4.4). The photogrammetry-based image processing requires detailed expertise and attention; Sect. 4.5 maybe helpful to avoid potential mistakes. The last section (4.6) summarizes some aspects of the use of LiDAR technologies in UAV-based surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • d’Oleire-Oltmanns S, Marzolff I et al (2012) Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote Sens 4(11):3390–3416. doi:10.3390/rs4113390

    Article  Google Scholar 

  • Agisoft (2017) Dense cloud classification and DTM generation with Agisoft photoscan professional. Available via http://www.agisoft.com/index.php?id=35. Last accessed 8 May 2017

  • Amon P, Riegl U et al (2015) UAV-based laser scanning to meet special challenges in lidar surveying, Geomatics Indaba Proceedings 2015. Stream 2:138–147

    Google Scholar 

  • Andersen MS, Gergely Á et al (2017) Processing and performance of topobathymetric lidar data for geomorphometric and morphological classification in a high-energy tidal environment. Hydrol Earth Syst Sci 21:43–63. doi:10.5194/hess-21-43-2017

    Article  Google Scholar 

  • Candiago S, Remondino F et al (2015) Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sens 7(4):4026–4047. doi:10.3390/rs70404026

    Article  Google Scholar 

  • Carrio A, Pestana J et al (2015) UBRISTES: UAV-based building rehabilitation with visible and thermal infrared remote sensing. In: Reis L, Moreira A, Lima P, Montano L, Muñoz-Martinez V (eds) Robot 2015: second Iberian robotics conference, Advances in Intelligent Systems and Computing, vol 417. Springer, Cham. doi:10.1007/978-3-319-27146-0_19

    Google Scholar 

  • Colomina I, Molina P (2014) Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J Photogramm Remote Sens 92:79–97. doi:10.1016/j.isprsjprs.2014.02.013

    Article  Google Scholar 

  • Enyedi A, Kozma Bognár V, Berke J (2016) Távérzékelési célú képalkotó algoritmusok összehasonlítása tartalom és szerkezet alapján. Remote Sens 6(6):464–475

    Google Scholar 

  • Essen H, Johannes W et al (2012) High resolution W-band UAV SAR. Paper presented at the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 22–27 July 2012. doi: 10.1109/IGARSS.2012.6352480

  • Fonstad MA, Dietrich JT et al (2013) Topographic structure from motion: a new development in photogrammetric measurement. Earth Surf Process Landf 38(4):421–430. doi:10.1002/esp.3366

    Article  Google Scholar 

  • Georgopoulos A, Oikonomou C et al (2016) Evaluating unmanned aerial platforms for cultural heritage large scale mapping. Int Arch Photogramm Remote Sens Spat Inf Sci XLI-B5:355–362. doi:10.5194/isprsarchives-XLI-B5-355-2016

    Article  Google Scholar 

  • Grenzdörffer G, Niemeyer F, Schmidt F (2012) Development of four vision camera system for a micro-UAV. Int Arch Photogramm Remote Sens Spat Inf Sci XXXIX-B1:369–374

    Article  Google Scholar 

  • Guenther GC (2011) Airborne lidar bathymetry. In: Maune D (ed) Digital elevation model technologies and applications: the DEM users manual. Maryland, Asprs Publications, p. 253–320

    Google Scholar 

  • Höfle B, Rutzinger M (2011) Topographic airborne LiDAR in geomorphology: a technological perspective. Z Geomorphol 55(2):1–29. doi:10.1127/0372-8854/2011/0055S2-0043

    Article  Google Scholar 

  • Jancsó T (2010) Data acquisition and integration 5., Photogrammetry. Available via http://www.tankonyvtar.hu/hu/tartalom/tamop425/0027_DAI5/ch01.html. Accessed 8 May 2017

  • Kalisperakis I, Stentoumis C et al (2015) Leaf area index estimation in vineyards from UAV hyperspectral data, 2D image mosaics and 3D canopy surface models. Int Arch Photogramme Remote Sens Spat Inf Sci XL-1/W4:299–303. doi:10.5194/isprsarchives-XL-1-W4-299-2015

    Article  Google Scholar 

  • Kohoutek T, Eisenbeiss H (2012) Processing of UAV based range imaging data to generate detailed elevation models of complex natural structures. Int Arch Photogramm Remote Sen Spat Inf Sci XXXIX-B1:405–410

    Article  Google Scholar 

  • Levin E, Zarnowski A, McCarty JL, Bialas J, Banaszek A, Banaszek S (2016) Feasibility study of inexpensive thermal sensors and small UAS deployment for living human detection in rescue missions application scenarios. Int Arch Photogramm Remote Sens Spat Inf Sci XLI-B8:99–103

    Article  Google Scholar 

  • Mandlburger G, Pfennigbauer M et al (2015) Complementing airborne laser bathymetry with UAV-based lidar for capturing alluvial landscapes. Proc. SPIE 9637. Remote Sens Agric Ecosyst Hydrol XVII:96370A. doi:10.1117/12.2194779

    Google Scholar 

  • Miřijovský J, Langhammer J (2015) Multitemporal monitoring of the Morphodynamics of a mid-mountain stream using UAS photogrammetry. Remote Sens 7(7):8586–8609. doi:10.3390/rs70708586

    Article  Google Scholar 

  • Nebiker S, Lack N et al (2016) Light-weight multispectral UAV sensors and their capabilities for predicting grain yield and detecting plant diseases. Int Arch Photogramm Remote Sens Spat Inf Sci XLI-B1:963–970. doi:10.5194/isprsarchives-XLI-B1-963-2016

    Article  Google Scholar 

  • Nex F, Remondino F (2014) UAV for 3D mapping applications: a review. Appl Geomatics 6(1):1–15. doi:10.1007/s12518-013-0120-x

    Article  Google Scholar 

  • Pfeifer N, Mandlburger G et al (2015) Lidar: exploiting the versatility of a measurement principle in photogrammetry. In: 55th photogrammetric week 2015. Stuttgart, Germany, p 105–118

    Google Scholar 

  • Remy M, de Macedo K, Moreira J (2012) The first UAV-based P- and X-band interferometric SAR system. Paper presented at the 2012 IEEE international geoscience and remote sensing symposium (IGARSS), 22–27 July 2012. doi:10.1109/IGARSS.2012.6352478

  • Rosen PA, Hensley S et al (2007) UAVSAR: new NASA airborne SAR system for research. IEEE Aerosp Electron Syst Mag 22(11):21–28. doi:10.1109/MAES.2007.4408523

    Article  Google Scholar 

  • Scholtz A, Kaschwich C et al (2011) Development of a new multi-purpose UAS for scientific application. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVIII-1/C22:149–154

    Article  Google Scholar 

  • Szabó S, Enyedi P et al (2015) Automated registration of potential locations for solar energy production with light detection and ranging (LiDAR) and small format photogrammetry. J Clean Prod 112(5):3820–3829. doi:10.1016/j.jclepro.2015.07.117

    Google Scholar 

  • Wallace L, Lucieer A et al (2012) Assessing the feasibility of UAV-based LiDAR for high resolution forest change detection. Int Arch Photogramm Remote Sens Spat Inf Sci XXXIX-B7:499–504

    Article  Google Scholar 

  • Xie F, Lin Z et al (2012) Study on construction of 3D building based on UAV images. Int Arch Photogramm Remote Sens Spat Inf Sci XXXIX-B1:469–473. doi:10.5194/isprsarchives-XXXIX-B1-469-2012

    Article  Google Scholar 

  • Yun M, Kimb J et al (2012) Application possibility of smartphone as payload for photogrammetric UAV system. Int Arch Photogramm Remote Sens Spat Inf Sci XXXIX-B4:349–352

    Article  Google Scholar 

  • Zhang W, Qi J et al (2016) An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sens 8(6):501. doi:10.3390/rs8060501

    Article  Google Scholar 

  • Zhou G, Yang J et al (2012) Advances of flash LiDAR development onboard UAV. Int Arch Photogramm Remote Sens Spat Inf Sci XXXIX-B3:193–198

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gergely Szabó .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Szabó, G., Bertalan, L., Barkóczi, N., Kovács, Z., Burai, P., Lénárt, C. (2018). Zooming on Aerial Survey. In: Casagrande, G., Sik, A., Szabó, G. (eds) Small Flying Drones. Springer, Cham. https://doi.org/10.1007/978-3-319-66577-1_4

Download citation

Publish with us

Policies and ethics