Skip to main content

Rare Event Simulation for Dynamic Fault Trees

  • Conference paper
  • First Online:
Computer Safety, Reliability, and Security (SAFECOMP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10488))

Included in the following conference series:

Abstract

Fault trees (FT) are a popular industrial method for reliability engineering, for which Monte Carlo simulation is an important technique to estimate common dependability metrics, such as the system reliability and availability. A severe drawback of Monte Carlo simulation is that the number of simulations required to obtain accurate estimations grows extremely large in the presence of rare events, i.e., events whose probability of occurrence is very low, which typically holds for failures in highly reliable systems.

This paper presents a novel method for rare event simulation of dynamic fault trees with complex repairs that requires only a modest number of simulations, while retaining statistically justified confidence intervals. Our method exploits the importance sampling technique for rare event simulation, together with a compositional state space generation method for dynamic fault trees.

We demonstrate our approach using three parameterized sets of case studies, showing that our method can handle fault trees that could not be evaluated with either existing analytical techniques, nor with standard simulation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, F., Belinfante, A., Berg, F., Guck, D., Stoelinga, M.I.A.: DFTCalc: a tool for efficient fault tree analysis. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.) SAFECOMP 2013. LNCS, vol. 8153, pp. 293–301. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40793-2_27

    Chapter  Google Scholar 

  2. Bobbio, A., Codetta-Raiteri, D.: Parametric fault trees with dynamic gates and repair boxes. In: Proceedings of the 2004 Annual IEEE Reliability and Maintainability Symposium (RAMS), pp. 459–465 (2004)

    Google Scholar 

  3. de Boer, P.T., L’Ecuyer, P., Rubino, G., Tuffin, B.: Estimating the probability of a rare event over a finite time horizon. In: Proceedings of the 2007 Winter Simulation Conference, pp. 403–411. IEEE Press (2007)

    Google Scholar 

  4. Boudali, H., Crouzen, P., Stoelinga, M.I.A.: A rigorous, compositional, and extensible framework for dynamic fault tree analysis. IEEE Trans. Depend. Secur. Comput. 7(2), 128–143 (2010)

    Article  Google Scholar 

  5. Carrasco, J.A.: Failure transition distance-based importance sampling schemes for the simulation of repairable fault-tolerant computer systems. IEEE Trans. Reliab. 55(2), 207–236 (2006)

    Article  Google Scholar 

  6. Codetta-Raiteri, D., Franceschinis, G., Iacono, M., Vittorini, V.: Repairable fault tree for the automatic evaluation of repair policies. In: Proceedings of the Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 659–668 (2004)

    Google Scholar 

  7. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Fault trees and sequence dependencies. In: Proceedings of the 1990 Annual IEEE Reliability and Maintainability Symposium (RAMS) (1990)

    Google Scholar 

  8. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the construction and analysis of distributed processes. Int. J. Softw. Tools Technol. Transf. 15(2), 89–107 (2013)

    Article  MATH  Google Scholar 

  9. Guck, D., Spel, J., Stoelinga, M.I.A.: DFTCalc: reliability centered maintenance via fault tree analysis (tool paper). In: Butler, M., Conchon, S., Zaïdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 304–311. Springer, Cham (2015). doi:10.1007/978-3-319-25423-4_19

    Chapter  Google Scholar 

  10. Heidelberger, P.: Fast simulation of rare events in queueing and reliability models. In: Donatiello, L., Nelson, R. (eds.) Performance/SIGMETRICS 1993. LNCS, vol. 729, pp. 165–202. Springer, Heidelberg (1993). doi:10.1007/BFb0013853

    Chapter  Google Scholar 

  11. Kahn, H., Harris, T.: Estimation of particle transmission by random sampling. In: Monte Carlo Method; Proceedings of the Symposium, 29–30 June–1 July 1949. National Bureau of Standards: Applied Mathematics Series, vol. 12, pp. 27–30 (1951)

    Google Scholar 

  12. Kumamoto, H., Tanaka, K., Inoue, K., Henley, E.J.: Dagger-sampling Monte Carlo for system unavailability evaluation. IEEE Trans. Reliab. R–29(2), 122–125 (1980)

    Article  Google Scholar 

  13. L’Ecuyer, P., Blanchet, J., Tuffin, B., Glynn, P.: Asymptotic robustness of estimators in rare-event simulation. ACM Trans. Model. Comput. Simul. (TOMACS) 20(1) (2010). doi:10.1145/1667072.1667078. Article No. 6

  14. L’Ecuyer, P., Tuffin, B.: Approximating zero-variance importance sampling in a reliability setting. Ann. Oper. Res. 189(1), 277–297 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ramakrishnan, M.: Unavailability estimation of shutdown system of a fast reactor by Monte Carlo simulation. Ann. Nucl. Energy 90, 264–274 (2016)

    Article  Google Scholar 

  16. Reijsbergen, D.P.: Efficient simulation techniques for stochastic model checking. Ph.D. thesis, University of Twente, Enschede, December 2013

    Google Scholar 

  17. Reijsbergen, D.P., de Boer, P., Scheinhardt, W., Juneja, S.: Path-ZVA: general, efficient and automated importance sampling for highly reliable Markovian systems. ACM Trans. Model. Comput. Simul. (TOMACS) (submitted)

    Google Scholar 

  18. Ruijters, E., Guck, D., Drolenga, P., Peters, M., Stoelinga, M.: Maintenance analysis and optimization via statistical model checking. In: Agha, G., Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp. 331–347. Springer, Cham (2016). doi:10.1007/978-3-319-43425-4_22

    Chapter  Google Scholar 

  19. Ruijters, E., Guck, D., Drolenga, P., Stoelinga, M.I.A.: Fault maintenance trees: reliability contered maintenance via statistical model checking. In: Proceedings of the IEEE 62nd Annual Reliability and Maintainability Symposium (RAMS), January 2016

    Google Scholar 

  20. Ruijters, E., Stoelinga, M.I.A.: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shahabuddin, P.: Importance sampling for the simulation of highly reliable Markovian systems. Manag. Sci. 40, 333–352 (1994)

    Article  MATH  Google Scholar 

  22. Stamatelatos, M., Vesely, W., Dugan, J.B., Fragola, J., Minarick, J., Railsback, J.: Fault tree handbook with aerospace applications. Office of safety and Mission Assurance NASA Headquarters (2002)

    Google Scholar 

  23. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault Tree Handbook. Office of Nuclear Regulatory Reasearch, U.S. Nuclear Regulatory Commision (1981)

    Google Scholar 

  24. Vesely, W.E., Narum, R.E.: PREP and KITT: computer codes for the automatic evaluation of a fault tree. Technical report, Idaho Nuclear Corp. (1970)

    Google Scholar 

Download references

Acknowledgments

This research was partially funded by STW and ProRail under project ArRangeer (grant 12238) with participation by Movares, STW project SEQUOIA (15474), NWO project BEAT (612001303), NWO project SamSam (50918239) and the EU project grant SUCCESS (651.002.001/1467).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enno Ruijters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ruijters, E., Reijsbergen, D., de Boer, PT., Stoelinga, M. (2017). Rare Event Simulation for Dynamic Fault Trees. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2017. Lecture Notes in Computer Science(), vol 10488. Springer, Cham. https://doi.org/10.1007/978-3-319-66266-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66266-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66265-7

  • Online ISBN: 978-3-319-66266-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics