Skip to main content

SAT-Based Local Improvement for Finding Tree Decompositions of Small Width

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing – SAT 2017 (SAT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10491))

Abstract

Many hard problems can be solved efficiently for problem instances that can be decomposed by tree decompositions of small width. In particular for problems beyond NP, such as #P-complete counting problems, tree decomposition-based methods are particularly attractive. However, finding an optimal tree decomposition is itself an NP-hard problem. Existing methods for finding tree decompositions of small width either (a) yield optimal tree decompositions but are applicable only to small instances or (b) are based on greedy heuristics which often yield tree decompositions that are far from optimal. In this paper, we propose a new method that combines (a) and (b), where a heuristically obtained tree decomposition is improved locally by means of a SAT encoding. We provide an experimental evaluation of our new method.

Research was supported by the Austrian Science Fund (FWF), Grants Y698, W1255-N23, and P-26696. The first author is also affiliated with the University of Potsdam, Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Retrieved on March 26, 2017.

  2. 2.

    The run and analysis tool is available online at https://github.com/daajoe/benchmark-tool. The file benchmark-tool/runscripts/treewidth/localimprovement. xml contains all solver flags to reproduce our benchmark runs.

References

  1. Abseher, M., Musliu, N., Woltran, S.: htd – a free, open-source framework for (customized) tree decompositions and beyond. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 376–386. Springer, Cham (2017). doi:10.1007/978-3-319-59776-8_30

    Chapter  Google Scholar 

  2. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a \(k\)-tree. SIAM J. Algebraic Discrete Methods 8(2), 277–284 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bannach, M., Berndt, S., Ehlers, T.: Jdrasil: a modular library for computing tree decompositions. Technical report, Lübeck University, Germany (2016)

    Google Scholar 

  4. Berg, J., Järvisalo, M.: SAT-based approaches to treewidth computation: an evaluation. In: Proceedings of the 26th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2014, pp. 328–335. IEEE Computer Society, Limassol, Cyprus, November 2014

    Google Scholar 

  5. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded treewidth. Comput. J. 51(3), 255–269 (2008)

    Article  Google Scholar 

  6. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations I. Upper bounds. Inf. Comput. 208(3), 259–275 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. van den Broek, J.W., Bodlaender, H.: TreewidthLIB - a benchmark for algorithms for treewidth and related graph problems. Technical report, Faculty of Science, Utrecht University (2010). http://www.staff.science.uu.nl/~bodla101/treewidthlib/

  8. Chimani, M., Mutzel, P., Zey, B.: Improved Steiner tree algorithms for bounded treewidth. J. Discrete Algorithms 16, 67–78 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic. Discr. Appl. Math. 108(1–2), 23–52 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Darwiche, A.: A differential approach to inference in Bayesian networks. J. ACM 50(3), 280–305 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dechter, R.: Tractable structures for constraint satisfaction problems. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, Chap. 7, vol. I, pp. 209–244. Elsevier, Amsterdam (2006)

    Google Scholar 

  12. Dechter, R.: Graphical model algorithms at UC Irvine. Technical report, UC Irvine (2013). The network instances consist of Bayesian and Markov network susedin UAI competition and protein folding/side-chain prediction problems. http://graphmod.ics.uci.edu/group

  13. Dell, H., Rosamond, F.: The parameterized algorithms and computational experiments challenge (2016). https://pacechallenge.wordpress.com/

  14. Fichte, J.K.: daajoe/gtfs2graphs - a GTFS transit feed to graph format converter (2016). https://github.com/daajoe/gtfs2graphs

  15. Fichte, J.K., Lodha, N., Szeider, S.: Trellis: treewidth local improvement solver (2017). https://github.com/daajoe/trellis

  16. Freuder, E.C.: A sufficient condition for backtrack-bounded search. J. ACM 32(4), 755–761 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gaspers, S., Gudmundsson, J., Jones, M., Mestre, J., Rümmele, S.: Turbocharging Treewidth Heuristics. In: Guo, J., Hermelin, D. (eds.) 11th International Symposium on Parameterized and Exact Computation (IPEC 2016). Leibniz International Proceedings in Informatics (LIPIcs), vol. 63, pp. 13:1–13:13. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2017)

    Google Scholar 

  18. Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: Proceedings of the Twentieth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI 2004), pp. 201–208. AUAI Press, Arlington (2004)

    Google Scholar 

  19. Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of knowledge representation and reasoning. Artif. Intell. 174(1), 105–132 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hammerl, T., Musliu, N., Schafhauser, W.: Metaheuristic algorithms and tree decomposition. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 1255–1270. Springer, Heidelberg (2015). doi:10.1007/978-3-662-43505-2_64

    Chapter  Google Scholar 

  21. Kask, K., Gelfand, A., Otten, L., Dechter, R.: Pushing the power of stochastic greedy ordering schemes for inference in graphical models. In: Burgard, W., Roth, D. (eds.) Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011. AAAI Press (2011)

    Google Scholar 

  22. Kittan, K.: Zuse cluster (2017). http://www.cs.uni-potsdam.de/bs/research/labsZuse.html

  23. Kloks, T.: Treewidth: Computations and Approximations. Springer, Heidelberg (1994)

    Book  MATH  Google Scholar 

  24. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. J. Roy. Statist. Soc. Ser. B 50(2), 157–224 (1988)

    MathSciNet  MATH  Google Scholar 

  25. Lodha, N., Ordyniak, S., Szeider, S.: A SAT approach to branchwidth. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 179–195. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2_12

    Google Scholar 

  26. Ordyniak, S., Szeider, S.: Parameterized complexity results for exact Bayesian network structure learning. J. Artif. Intell. Res. 46, 263–302 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Roussel, O.: Controlling a solver execution with the runsolver tool. J. Satisfiability Boolean Model. Comput. 7, 139–144 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Samer, M., Veith, H.: Encoding treewidth into SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 45–50. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02777-2_6

    Chapter  Google Scholar 

  29. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005). doi:10.1007/11564751_73

    Chapter  Google Scholar 

  30. Song, Y., Liu, C., Malmberg, R.L., Pan, F., Cai, L.: Tree decomposition based fast search of RNA structures including pseudoknots in genomes. In: Proceedings of the 4th International IEEE Computer Society Computational Systems Bioinformatics Conference, CSB 2005, pp. 223–234. IEEE Computer Society (2005)

    Google Scholar 

  31. Tamaki, H.: TCS-Meiji (2016). https://github.com/TCS-Meiji/treewidth-exact

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes K. Fichte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Fichte, J.K., Lodha, N., Szeider, S. (2017). SAT-Based Local Improvement for Finding Tree Decompositions of Small Width. In: Gaspers, S., Walsh, T. (eds) Theory and Applications of Satisfiability Testing – SAT 2017. SAT 2017. Lecture Notes in Computer Science(), vol 10491. Springer, Cham. https://doi.org/10.1007/978-3-319-66263-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66263-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66262-6

  • Online ISBN: 978-3-319-66263-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics