Skip to main content

Molecular Marker Technology for Genetic Improvement of Underutilised Crops

  • Chapter
  • First Online:
Crop Improvement

Abstract

A subset of underutilised crops copes comparatively better in marginal soils and under less favourable environmental conditions than their major crop equivalents. Hence, developing the subset further for future agriculture makes a suitable and complementary approach to the continued use of major crops. This is particularly true given the expected negative impact of climate change on current major crop production systems and the gap between the current rate of genetic improvement of most major crops and the higher rates required to be able to feed the predicted nine billion in 2050. One such promising crop is bambara groundnut (Vigna subterranea (L.) Verdc.), an indigenous African legume which thrives in hot climates and is well suited to poor, infertile soils where other crops fail to produce reasonable yields. Another is winged bean (Psophocarpus tetragonolobus), a multi-purpose legume in which all parts of the plant, except the stem, are edible and nutritious. Nevertheless, there are a number of constraints to expanding the use of underutilised crops, one of which is erratic yields. The use of molecular markers could facilitate the genetic improvement of underutilised crops, including achieving higher and more stable yields. In this chapter, we first discuss the types of molecular markers commonly used in plant studies, followed by a detailed discussion on the different uses of markers. In addition to the generation of specific data within species, cross-species approaches and, in particular, translating knowledge and resources derived from closely related model and major plant species is a pragmatic approach to develop, given that limiting resources are often one of the major bottlenecks in programmes to develop underutilised crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah Bamba SA, Massawe F (2013) Microsatellites based marker molecular analysis of Ghanaian bambara groundnut (Vigna subterranean (L.) Verdc.) landraces alongside morphological characterization. Genet Resour Crop Evol 60:777–787

    Article  CAS  Google Scholar 

  • Abdullah Bamba SA, Massawe F, Mayes S (2015a) Beyond landraces: developing improved germplasm resources for underutilized species—a case for Bambara groundnut. Biotechnol Genet Eng Rev 30:37–41. doi:10.1080/02648725.2014.992625

    Google Scholar 

  • Abdullah Bamba SA, Massawe F, Mayes S (2015b) Beyond landraces: developing improved germplasm resources for underutilized species—a case for Bambara groundnut. Biotechnol Genet Eng Rev 1-2:37–41

    Google Scholar 

  • Abraham B, Araya H, Berhe T, Edwards S, Gujja B, Khadka RB, Sen D, Koma Y, Sharif A, Styger E, Uphoff N, Verma A (2014) The system of crop intensification: reports from the field on improving agricultural production, food security, and resilience to climate change for multiple crops. Agric Food Sci 3:1–12

    Article  Google Scholar 

  • Ahmad SA, Redjeki ES, Ho WK, Aliyu S, Mayes K, Massawe F, Kilian A, Mayes S (2016) Construction of a genetic linkage map and QTL analysis in bambara groundnut. Gen 59:459–472. doi:10.1139/gen-2015-0153

    CAS  Google Scholar 

  • Arias RS, Borrone JW, Tondo CL, Kuhn DN, Irish BM, Schnell RJ (2012) Genomics of tropical fruit tree crops. In: Schnell RJ, Priyadarshan PM (eds) Genomics of tree crops. Springer Science, New York, pp 209–239

    Chapter  Google Scholar 

  • Arif IA, Bakir MA, Khan HA, Al Farhan AH, Al Homaidan AA, Bahkali AH et al (2010) A brief review of molecular techniques to assess plant diversity. Int J Mol Sci 11(5):2079–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babu BK, Dinesh P, Agrawal PK, Sood S, Chandrashekara C, Bhatt JC, Kumar A (2014) Comparative genomics and association mapping approaches for blast resistant genes in finger millet using SSRs. PLoS One 9(6):e99182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bardakci F (2000) Random amplified polymorphic DNA (RAPD) markers. Turk J Biol 25:185–196

    Google Scholar 

  • Basu S, Roberts JA, Azam-Ali SN, Mayes S (2007) Development of microsatellite markers for bambara groundnut (Vigna subterranea L. Verdc.)—an underutilized African legume crop species. Mol Ecol Notes 7:1326–1328

    Article  CAS  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep P, Feng L, Vaughn JN et al (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30(6):555–561

    Article  CAS  PubMed  Google Scholar 

  • Bisen PS (2014) Laboratory protocols in applied life sciences. CRC Press, Boca Raton

    Book  Google Scholar 

  • Bohra A, Pandey MK, Jha UC, Singh B, Singh IP, Datta D, Chaturvedi SK, Nadarajan N, Varshney RK (2014) Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects. Theor Appl Genet 127(6):1263–1291

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Sullivan PF (2003) Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughput. Pharmacogenomics J 3:77–96

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Chen X, Tian J, Yang Y, Liu Z, Hao X et al (2015) Development of gene-based SSR markers in rice bean (Vigna umbellata L.) based on transcriptome data. PLoS One 11(3):e0151040

    Article  CAS  Google Scholar 

  • Chen HL, Chen X, Tian J, Yang Y, Liu Z, Hao X et al (2016) Development of gene-based SSR markers in rice bean (Vigna umbellata L.) based on transcriptome data. PLoS One 11(3):e0151040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng A, Ismanizan I, Mohamad O, Habibuddin H (2012) Simple and rapid molecular techniques for identification of amylose levels in rice varieties. Int J Mol Sci 13:6156–6166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng A, Mayes S, Dalle G, Demissew S, Massawe F (2015) Diversifying crops for food and nutrition security—a case of teff. Biol Rev 92:188–198

    Article  PubMed  Google Scholar 

  • Christensen SA, Pratt DB, Pratt C, Nelson PT, Stevens MR, Jellen EN et al (2007) Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Gen Res 5:82–95

    Article  CAS  Google Scholar 

  • Coles ND, Coleman CE, Christensen SA, Jellen EN, Stevens MR, Bonifacio A, Rojas-Beltran JA, Fairbanks DJ, Maughan PJ (2005) Development and use of an expressed sequenced tag library in quinoa (Chenopodium quinoa Willd.) for the discovery of single nucleotide polymorphisms. Plant Sci 168(2):439–447

    Article  CAS  Google Scholar 

  • Cruz VMV, Kilian A, Dierig DA (2013) Development of DArT marker platforms and genetic diversity assessment of the U.S. collection of the new oilseed crop Lesquerella and related species. PLoS One 8:e64062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dane F, Liu J, Zhang C (2006) Phylogeography of the bitter apple, Citrullus colocynthis. Genet Resour Crop Evol 54:327–336

    Article  Google Scholar 

  • Dansi A, Mignouna HD, Zoudjihekpon J, Sangare A, Asiedu R, Ahoussou N (2000) Identification of some Benin Republic’s Guinea yam cultivars using randomly amplified polymorphic DNA. Genet Resourc Crop Evol 47:619–662

    Article  Google Scholar 

  • Das AK, Anjaneluyu ASR, Gadekar YP, Singh RP, Pragati H (2008) Effect of full-fat soy paste and textured soy granules on quality and shelf-life of goat meat nuggets in frozen storage. Meat Sci 80:607–614

    Article  CAS  PubMed  Google Scholar 

  • Dawson IK, Guarino L, Jaenicke H (2007) Underutilised plant species: impacts of promotion on biodiversity. Position Paper No. 2. ICUC, Colombo, Sri Lanka

    Google Scholar 

  • De La Fuente GN, Frei UK, Lubberstedt T (2013) Accelerating plant breeding. Trends Plant Sci 18:667–672

    Article  CAS  Google Scholar 

  • Dhanasekar P, Dhumal KN, Reddy KS (2010) Identification of RAPD markers linked to plant type gene in pigeonpea. Indian J Biotechnol 9:58–63

    CAS  Google Scholar 

  • Ebert AW (2014) Potential of underutilized traditional vegetables and legume crops to contribute to food and nutritional security, income and more sustainable production systems. Sustainability 6:319–335

    Article  Google Scholar 

  • Edwards KJ, Barker JHA, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 20:758–760

    CAS  PubMed  Google Scholar 

  • Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132

    Article  CAS  PubMed  Google Scholar 

  • Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D, Dall’Aglio E, Valè G (2005) Marker assisted selection in crop plants. Plant Cell Tissue Org 82:317–342

    Article  CAS  Google Scholar 

  • Fu D, Ma B, Mason A, An Z (2013) MicroRNA-based molecular markers: a novel PCR-based genotyping technique in brassica species. Plant Breed 132(4):75–81

    Article  CAS  Google Scholar 

  • Ganal MW, Altmann T, Röder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G et al (2012) The genome of melon (Cucumis melo L.) Proc Natl Acad Sci U S A 109(29):11872–11877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonthier P, Sillo F, Lagostina E, Roccotelli A, Cacciola OS, Stenlid J, Garbelotto M (2015) Selection processes in simple sequence repeats suggest a correlation with their genomic location: insights from a fungal model system. BMC Genomics 16:1107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Govindaraj M, Vetriventhan M, Srinivasan M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genet Res Int 2015:431–487

    Google Scholar 

  • Gupta PK, Kumar J, Mir RR, Kumar A (2010) Marker assisted selection as a component of conventional plant breeding. Plant Breed Rev 33:145–217

    Google Scholar 

  • Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S et al (2010) A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Genet 121(3):511–533

    Article  CAS  PubMed  Google Scholar 

  • Ho WK, Muchugi A, Muthemba S, Kariba R, Mavenkeni BO, Hendre P, Song B, Deynze V, Massawe F, Mayes S (2016) Use of microsatellite markers for the assessment of bambara groundnut breeding system and varietal purity before genome sequencing. Genome 59(6):427–431

    Article  CAS  PubMed  Google Scholar 

  • Huang CW, Lin YT, Ding ST, Lo LL, Wang PH, Lin EC, Liu FW, Lu YW (2015) Efficient SNP discovery by combining microarray and lab-on-a-chip data for animal breeding and selection. Microarrays 4:570–595

    Article  PubMed  PubMed Central  Google Scholar 

  • http://rebase.neb.com/rebase/rebase.html

  • http://seedsofdiscovery.org/about/genotyping-platform/

  • http://www.cropsforthefuture.org/

  • Hunt HV, Campana MG, Lawes MC, Park Y-J, Bower MA, Howe CJ et al (2011) Genetic diversity and phylogeography of broomcorn millet (Panicum miliaceum L.) across Eurasia. Mol Ecol 20:4756–4771

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang J, Ang JK, Son B, Kim K, Park Y (2011) Genetic diversity in watermelon cultivars and related species based on AFLPs and EST-SSRs. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39(2):285

    CAS  Google Scholar 

  • Iranjo P, Nabati Ahmadi D, Sorkheh K, Memeari HR, Ercisli S (2016) Genetic diversity and phylogenetic relationships between and within wild Pistacia species populations and implications for its conservation. J Forestry Res 27(3):685–697

    Article  Google Scholar 

  • Jaccoud DK, Peng D, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29(4):e25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvis DE, Kopp OR, Jellen EN, Mallory MA, Pattee J, Bonifacio A, Coleman CE, Stevens MR, Fairbanks DJ, Maughan PJ (2008) Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.) J Genet 87:39–51

    Article  CAS  PubMed  Google Scholar 

  • Jarvis DE, Ho YS, Lightfoot DJ, Schmockel SM, Li B et al (2017) The genome of Chenopodium quinoa. Nature 542(7641):307–312

    Article  CAS  PubMed  Google Scholar 

  • Ji Q, Xu X, Wang K (2013) Genetic transformation of major cereal crops. Int J Dev Biol 57:495–508

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Zhou S, Kong X et al (2013) Aegilops tauschiidraft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496(7443):91–95

    Article  CAS  PubMed  Google Scholar 

  • Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F et al (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breed 3:381–390

    Article  CAS  Google Scholar 

  • Joshi SP, Ranjekar PK, Gupta VS (1999) Molecular markers in plant genome analysis. Crop Sci 16:102–105

    Google Scholar 

  • Kesawat MS, Kumar BD (2009) Molecular markers: it’s application in crop improvement. J Crop Sci Biotechnol 12:169–181

    Article  Google Scholar 

  • Khoury CK, Bjorkman AD, Dempewolf H, Ramirez-villegas J, Guarino L, Jarvis A, Rieseberg LH, Struik PC (2014) Increasing homogeneity in global food supplies and the implications for food security. Proc Natl Acad Sci U S A 111:4001–4006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Gupta VK, Misra AK, Modi DR, Pandey BK (2009) Potential of molecular markers in plant biotechnology. Plant Omics J 2(4):141–162

    CAS  Google Scholar 

  • Kumar J, Choudhary AK, Solanki RK, Pratap A (2011) Towards marker-assisted selection in pulses: a review. Plant Breed 130:297–313

    Article  CAS  Google Scholar 

  • Kumar S, Banks TW, Cloutier S (2012) SNP discovery through next-generation sequencing and its applications. Int J Plant Genomics 2012:831460. doi:10.1155/2012/831460

    PubMed  PubMed Central  Google Scholar 

  • Kumari K, Pande A (2010) Study of genetic diversity in finger millet (Eleusine coracana L. Gaertn) using RAPD markers. Afr J Biotechnol 9(29):4542–4549

    CAS  Google Scholar 

  • Kumpatla SP, Buyyarapu R, Abdurakhmonov IY, Mammadov JA (2012) Genomics-assisted plant breeding in the 21st century: technological advances and progress. Plant Breed:131–184

    Google Scholar 

  • Lai PS, Ho WS, Pang SL (2013) Development, characterization and cross-species transferability of expressed sequence tag-simple sequence repeat (EST-SSR) markers derived from kelampayan tree transcriptome. Biotechnology 12:225–235

    Article  Google Scholar 

  • Levi A, Thomas CE, Keinath AP, Wehner TC (2001) Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Gen Res Crop Evol 48:559

    Article  Google Scholar 

  • Lin WH, Kussell E (2012) Evolutionary pressures on simple sequence repeats in prokaryotic coding regions. Nucleic Acids Res 40(6):2399–2413

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Kuo J, Ma J (1996) A PCR-based DNA fingerprinting technique: AFLP for molecular typing of bacteria. Nucleic Acids Res 24(18):3649–3650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Yang YS, Hao CY, Guo WD (2007a) Ecological risk assessment using RAPD and distribution pattern of a rare and endangered species. Chemosphere 68:1497–1505

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Banik M, Yu K, Park SJ, Poysa V, Guan Y (2007b) Marker-assisted election (MAS) in major cereal and legume crop breeding: current progress and future directions. Int J Plant Breed 1:74–88

    Google Scholar 

  • Ma JQ, Yao MZ, Ma CL, Wang XC, Jin JQ, Wang XM, Chen L (2014) Construction of a SSR-based genetic map and identification of QTLs for Catechins content in tea plant (Camellia sinensis). PLoS One 9(3):e93131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Massawe FJ, Dickinson M, Roberts JA, Azam-Ali SN (2002) Genetic diversity in bambara groundnut landraces (Vigna subterranea (L.) Verdc) revealed by AFLP markers. Gen 45:1175–1180

    CAS  Google Scholar 

  • Massawe FJ, Roberts JA, Azam-Ali SN, Davey MR (2003) Genetic diversity in bambara groundnut (Vigna subterranea (L.) Verdc) landraces assessed by random amplified polymorphic DNA (RAPD) markers. Genet Resour Crop Evol 50:737–741

    Article  CAS  Google Scholar 

  • Massawe F, Mwale SS, Azam-Ali SN, Roberts JA (2005) Breeding in bambara groundnut (Vigna subterranea (L.) Verdc.): strategic considerations. Afr J Biotechnol 4(6):463–471

    Google Scholar 

  • Massawe F, Mayes S, Cheng A (2016) Crop diversity: an unexploited treasure trove for food security. Trends Plant Sci 21(5):365–368

    Article  CAS  PubMed  Google Scholar 

  • Masters WA (2010) Africa’s turnaround: from crisis to opportunity in African agriculture. In: Food and financial crises: impacts on Sub-Saharan Africa. CAB International, Wallingford

    Google Scholar 

  • Maughan PJ, Bonifacio A, Jellen EN, Stevens MR, Coleman CE, Ricks M et al (2004) A genetic linkage map of quinoa (Chenopodium Quinoa) based on AFLP, RAPD, and SSR markers. Theor Appl Genet 109(6):1188–1195

    Article  CAS  PubMed  Google Scholar 

  • Maughan PJ, Yourstone SM, Jellen EN, Udall JA (2009) SNP discovery via genomic reduction, barcoding and 454-pyro-sequencing in amaranth. Plant Gen 2:260–270

    Article  CAS  Google Scholar 

  • Maughan PJ, Smith SM, Jellen EN, Fairbanks D (2011) Development, characterization and linkage mapping of single nucleotide polymorphisms in the grain amaranths (Amaranthus sp.) Plant Gen 4:1–10

    Article  Google Scholar 

  • Maughan PJ, Smith SM, Rojas-Beltran JA, Elzinga D, Raney JA, Jellen EN, Bonifacio A, Udall JA, Fairbanks DJ (2012) Single nucleotide polymorphism identification, characterization, and linkage mapping in quinoa. Plant Genome 5:114–125

    Article  CAS  Google Scholar 

  • Mayes S, Massawe F, Anderson PG, Roberts JA, Azam-Ali SN, Hermann M (2011) The potential of underutilized crops to improve security of food production. J Exp Bot 63:1075–1079

    Article  PubMed  CAS  Google Scholar 

  • Mba C, Tohme J (2005) Use of AFLP markers in surveys of plant diversity. Methods Enzymol 395:177–201

    Article  CAS  PubMed  Google Scholar 

  • Meksem K, Ruben E, Hyten D, Triwitayakorn K, Lightfoot DA (2001) Conversion of AFLP bands into high-throughput DNA markers. Mol Genet Genomics 265(2):207–214

    Article  CAS  PubMed  Google Scholar 

  • Melo ATO, Bartaula R, Hale L (2016) GBS-SNP-CROP: a reference-optional pipeline for SNP discovery and plant germplasm characterization using variable length, paired-end genotyping-by-sequencing data. BMC Bioinformatics 17:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Islam KN, Latif MA (2013) A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. Int J Mol Sci 14(11):22499–22528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mignouna HD, Abang Asiedu R (2007) Advances in yam (Dioscorea spp.) genetics and genomics proceedings of the 13th ISTRC symposium, pp 72–81

    Google Scholar 

  • Mignouna HD, Ellis NTH, Asiedu R, Ng QN (1998) Analysis of genetic diversity in Guinea yams (Dioscorea spp) using AFLP fingerprinting. Trop Agric (Trinidad) 75:224–229

    Google Scholar 

  • Mignouna HD, Mank RA, Ellis THN, van den Bosch N et al (2002a) A genetic linkage map of water yam (Dioscorea alata L.) based on AFLP markers and QTL analysis for anthracnose resistance. Theor Appl Genet 105:726–735

    Article  CAS  PubMed  Google Scholar 

  • Mignouna HD, Mank RA, Ellis THN et al (2002b) A genetic linkage map of Guinea yam (Dioscorea rotundata L.) based on AFLP markers. Theor Appl Genet 105:716–725

    Article  CAS  PubMed  Google Scholar 

  • Mignouna HD, Abang MM, Fagbemi SA (2003) A comparative assessment of molecular marker assays (AFLP, RAPD and SSR) for white yam (Dioscorea rotundata Poir.) germplasm characterisation. Ann Appl Biol 142:269–276

    Article  CAS  Google Scholar 

  • Mochida K, Shinozaki K (2013) Unlocking Triticeae genomics to sustainably feed the future. Plant Cell Physiol 54(12):1931–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moe KT, Gwag JG, Park YJ (2012) Trends in genomics and molecular marker systems for the development of some underutilized crops. Gen Genom 34(5):451–466

    Article  CAS  Google Scholar 

  • Molosiwa OO, Aliyu S, Stadler F, Mayes K, Massawe F, Kilian A, Mayes S (2015) SSR marker development, genetic diversity and population structure analysis of Bambara groundnut [Vigna subterranea (L.) Verdc.] landraces. Gen Res Crop Evol 62(8):1225–1243

    Article  CAS  Google Scholar 

  • Narina SS, Buyyarapu R, Kottapalli KR, Sartie AM, Ali MI, Robert A et al (2011) Generation and analysis of expressed sequence tags (ESTs) for marker development in yam (Dioscorea alata L.) BMC Genomics 12:100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naylor RL, Falcon WP, Goodman RM, Jahn MM, Sengooba T, Tefera H, Nelson RJ (2004) Biotechnology in the developing world: a case for increased investments in orphan crops. Food Policy 29:15–44

    Article  Google Scholar 

  • Ngwira AR, Thierfelder C, Lambert DM (2012) Conservation agriculture systems for Malawian smallholder farmers: longterm effects on crop productivity, profitability and soil quality. Renew Agric Food Syst 28(4):350–363

    Article  Google Scholar 

  • Nimmakayala P, Tomason YR, Jeong J, Ponniah SK, Karunathilake A, Levi A, Perumal R, Levi UK (2010) Genetic reticulation and interrelationships among citrullus species as revealed by joint analysis of shared AFLPs and species-specific SSR alleles. Plant Gen Res 8(1):16–25

    Article  CAS  Google Scholar 

  • Ojiewo C, Tenkouano A, Oluoch M, Yang R (2010) The role of AVRDC—the world vegetable centre in vegetable value chains. Afr J Hort Sci 3:1–23

    Google Scholar 

  • Padulosi S, Hoeschle-Zeledon I (2004) Underutilized plant species: what are they? LEISA 20(1):56

    Google Scholar 

  • Petro D, Onyeka TJ, Etienne S, Rubens S (2011) An intraspecific genetic map of water yam (Dioscorea alata L.) based on AFLP markers and QTL analysis for anthracnose resistance. Euphytica 179:405–416

    Article  Google Scholar 

  • Phung NTP, Mai CD, Mournet P, Frouin J, Droc G, Ta NK, Jouannic S, Lê LT, Do VN, Gantet P, Courtois B (2014) Characterization of a panel of Vietnamese rice varieties using DArT and SNP markers for association mapping purposes. BMC Plant Biol 14:371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci U S A 109:12302–12308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1(7):215–222

    Article  Google Scholar 

  • Rahman MM, Aminul MI, Sofian MA, Amru NB (2014) Tropical legume crop rotation and nitrogen fertilizer effects on agronomic and nitrogen efficiency of rice. Sci World J. doi:10.1155/2014/490841

  • Ranamukhaarachchi DG, Kane ME, Guy CL, Li QB (2000) Modified AFLP technique for rapid genetic characterization in plants. Biotechniques 29(4):858–859

    CAS  PubMed  Google Scholar 

  • Raney JA, Reynolds DJ, Elzinga DB, Page J, Udall JA, Jellen EN, Bonfacio A, Fairbanks D, Maughan PJ (2014) Transcriptome analysis of drought induced stress in Chenopodium quinoa. Am J Plant Sci 5:338–357

    Article  CAS  Google Scholar 

  • Raveendar S, Lee GA, Jeon YA, Lee YJ, Lee JR, Cho GT, Cho JH, Park JH, Ma KH, Chung JW (2015) Cross-amplification of Vicia sativa subsp. sativa microsatellites across 22 other Vicia species. Molecules 20(1):1543–1550

    Article  PubMed  CAS  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8:1–8

    Google Scholar 

  • Ren X, Wang J, Liu L, Sun G, Li C, Luo H, Sun D (2016) SNP-based high density genetic map and mapping of btwd1 dwarfing gene in barley. Sci Rep 6:31741. doi:10.1038/srep31741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts RJ, Vincze T, Posfai J, Macelis D (2003) REBASE: restriction enzymes and methyltransferases. Nucleic Acids Res 31(1):418–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubinstein M, Katzenellenbogen M, Eshed R, Rozen A, Katzir N, Colle M et al (2015) Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array. PLoS One 10(4):e0124101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saeed B, Baranwal VK, Khurana P (2016) Comparative transcriptomics and comprehensive marker resource development in mulberry. BMC Genomics 17:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sánchez-Sevilla JF, Horvath A, Botella MA, Gaston A, Folta K, Kilian A, Denoyes B, Amaya I (2015) Diversity arrays technology (DArT) marker platforms for diversity analysis and linkage mapping in a complex crop, the octoploid cultivated strawberry (Fragaria × ananassa). PLoS One 10(12):e0144960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sansaloni C, Petroli C, Jaccoud D, Carling J, Detering F, Grattapaglia D, Kilian A (2011) Diversity Arrays Technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proc 5(Suppl 7):54

    Article  Google Scholar 

  • Saski CA, Bhattacharjee R, Scheffler BE, Asiedu R (2015) Genomic resources for water yam (Dioscorea alata L.): analyses of EST-sequences, de novo sequencing and GBS libraries. PLoS One 10(7):e0134031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schlotterer C (2004) The evolution of molecular markers—just a matter of fashion? Nat Rev Genet 5:63–69

    Article  PubMed  CAS  Google Scholar 

  • Semagn K, Bjørnstad A, Ndjiondjop MN (2006) An overview of molecular marker methods for plants. Afr J Biotechnol 5(25):2540–2568

    CAS  Google Scholar 

  • Shi W, Tao F (2014) Vulnerability of African maize yield to climate change and variability during 1961–2010. Food Secur 6:471–481

    Article  Google Scholar 

  • Si Y, Zhang C, Meng S, Dane F (2009) Gene expression changes in response to drought stress in Citrullus colocynthis. Plant Cell Rep 28:997–1009

    Article  CAS  PubMed  Google Scholar 

  • Suresh S, Chung JW, Cho GT, Sung JS, Park JH, Gwag JG, Baek HJ (2014) Analysis of molecular genetic diversity and population structure in Amaranthus germplasm using SSR markers. Plant Biosyst 148(4):635–644

    Article  Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Nat Biotechnol 7:257–264

    Article  CAS  Google Scholar 

  • Tártara SMC, Manifesto MM, Bramardi SJ, Bertero HD (2012) Genetic structure in cultivated quinoa (Chenopodium quinoa Willd.), a reflection of landscape structure in Northwest Argentina. Conserv Genet 13:1027-1038

    Article  Google Scholar 

  • Thies E (2000) Promising and underutilized species, crops and breeds. GTZ, Eschborn, Germany

    Google Scholar 

  • Tomar RS (2010) Molecular markers and plant biotechnology. New India Publishing, New Delhi

    Google Scholar 

  • Troconis-Torres IG, Rojas-López M, Hernández-Rodríguez C, Villa-Tanaca L, Maldonado-Mendoza IE et al (2002) Biochemical and molecular analysis of some commercial samples of chilli peppers from Mexico. J Biomed Biotechnol 2012:873090

    Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Chen W, Li Y et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30(1):83–89

    Article  CAS  Google Scholar 

  • Vatanparast M, Shetty P, Chopra R, Doyle JJ, Sathyanarayana N, Egan AN (2016) Transcriptome sequencing and marker development in winged bean (Psophocarpus tetragonolobus; Leguminosae). Sci Rep 6:29070. doi:10.1038/srep29070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45(5):487–494

    Article  CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Hu H, Goertzen LR, McElroy JS, Dane F (2014) Analysis of the Citrullus colocynthis transcriptome during water deficit stress. PLoS One 9(8):e104657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weising K, Nybom H, Pfenninger M, Wolff K, Meyer W (1994) DNA fingerprinting in plants and fungi. CRC Press, Boca Raton

    Google Scholar 

  • Williams JT, Haq N (2002) Global research on underutilized crops. An assessment of current activities and proposals for enhanced cooperation. ICUC, Southampton

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong QN, Massawe F, Mayes K, Blythe M (2016) Molecular genetic tools to support genetic improvement of winged bean (Psophocarpus tetragonolobus) for food and nutrition security. Acta Hortic 1110:1–6

    Article  Google Scholar 

  • Wong QN, Tanzi AS, Ho WK, Malla S, Blythe M et al (2017) Development of gene based SSR markers in winged bean (Psophocarpus tetragonolobus (L.) DC.) for diver-sity assessment. Genes 8(3):100

    Article  PubMed Central  CAS  Google Scholar 

  • Yu H, Li Q (2007) Development of EST-SSRs in the Mediterranean blue mussel, Mytilus galloprovincialis. Mol Ecol Notes 7(6):1308–1310

    Article  CAS  Google Scholar 

  • Zeid M, Belay G, Mulkey S, Poland J, Sorrells ME (2011) QTL mapping for yield and lodging resistance in an enhanced SSR-based map for tef. Theor Appl Genet 122:77–93

    Article  CAS  PubMed  Google Scholar 

  • Zeid M, Assefa K, Haddis A, Chanyalew S, Sorrells ME (2012) Genetic diversity in tef (Eragrostis tef) germplasm using SSR markers. Field Crop Res 127:64–70

    Article  Google Scholar 

  • Zhao Y, Williams R, Prakash CS, He G (2012) Identification and characterization of gene-based SSR markers in date palm (Phoenix dactylifera L.) BMC Plant Biol 12:237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Festo Massawe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cheng, A. et al. (2017). Molecular Marker Technology for Genetic Improvement of Underutilised Crops. In: Abdullah, S., Chai-Ling, H., Wagstaff, C. (eds) Crop Improvement. Springer, Cham. https://doi.org/10.1007/978-3-319-65079-1_3

Download citation

Publish with us

Policies and ethics