Skip to main content

Rhizobium as a Crop Enhancer and Biofertilizer for Increased Non-legume Production

  • Chapter
  • First Online:
Rhizobium Biology and Biotechnology

Part of the book series: Soil Biology ((SOILBIOL,volume 50))

Abstract

Nitrogen is a nutrient required for the growth and improvement of non-legume yield such as cereal. Therefore, nitrogen must be therefore supplied by fertilizers. Unfortunately, the use of synthetic nitrogenous fertilizers contributes to contamination of soils and groundwater, leading to human health hazards, and threatens agricultural sustainability. Biological methods of sustainable agriculture are the only way to overcome these problems. Nowadays, biofertilizers have been used as a highly efficient alternative to chemical fertilizers due to their environment-friendly, easy to apply, nontoxic, and low-cost properties. Utilization of rhizobial biofertilization is one of the promising alternative methods and a solution to enhance non-legume production in an economically and eco-friendly way. This chapter focuses on the use of Rhizobium as a bio-enhancer, biofertilizer, and biocontrol agent and on its advantages for increased non-legume production in present agriculture system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abera T, Debele T, Semu E, Wegary D, Kim H (2016) Faba bean precursor crop and N rates on subsequent yield components of maize in Toke Kutaye, western Ethiopia. Sky J Agric Res 5(1):001–014

    Google Scholar 

  • Adnan M, Shah Z, Khan A, Shah M, Ali Khan G, Ali A, Ali Khan N, Saleem N, Nawaz S, Akbar S, Samreen S, Zaib K (2014) Integrated effects of Rhizobial inoculum and inorganic fertilizers on wheat yield and yield components. Am J Plant Sci 5:2066–2073

    Article  Google Scholar 

  • Akhtar N, Arshad I, Shakir MA, Qureshi MA, Sehrish J, Ali L (2013) Co-inoculation with Rhizobium and Bacillus sp to improve the phosphorus availability and yield of wheat (Triticum aestivum L.). J Anim Plant Sci 23(1):190–197

    Google Scholar 

  • Al-Ani RA, Adhab MA, Mahdi MH, Abood HM (2012) Rhizobium japonicum as a biocontrol agent of soybean root rot disease caused by Fusarium solani and Macrophomina phaseolina. Plant Prot Sci 48(4):149–155

    Google Scholar 

  • Antoun H, Bordeleau LM, Gagnon C (1978) Antagonisme entre Rhizobium meliloti et Fusarium oxysporum en relation avec l’efficacité symbiotique. Can J Plant Sci:58–75

    Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on nonlegumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67

    Google Scholar 

  • Armero J, Requejo R, Jorrin J, Lopez-Valbuena R, Tena M (2001) Release of phytoalexins and related isoflavonoids from intact chickpea seedlings elicited with reduced glutathione at root level. Plant Physiol Biochem 39:785–795

    Article  CAS  Google Scholar 

  • Ballhorn DJ, Godschalx AL, Kautz S (2013) Co-variation of chemical and mechanical defenses in lima bean (Phaseolus lunatus L.). J Chem Ecol 39:413–417

    Google Scholar 

  • Beijerinck MW (1888) Die Bacterien der Papilionaceenknölchen. Bot Zeitung 46:797–804

    Google Scholar 

  • Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80(2):199–209

    Article  CAS  PubMed  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650

    Article  CAS  Google Scholar 

  • Bouraoui M, Abbes Z, Abdi N, Hmissi I, Sifi B (2012) Evaluation of efficient Rhizobium isolates as biological control agents of Orobanche foetida Poir. parasitizing Vicia faba L. minor in Tunisia. Bulgarian J Agr Sci 18(4):557–564

    Google Scholar 

  • Buonassisi AJ, Copeman RJ, Pepin HS, Eaton GW (1986) Effect of Rhizobia spp. on Fusarium f.sp. phaseoli. Can J Plant Pathol 8:140–146

    Article  Google Scholar 

  • Burdman S, Volpin H, Kigel J, Kapulnik Y, Okon Y (1996) Promotion of nodulation and growth of common bean (Phaseolus vulgaris L.). Soil Biol Biochem 29:923–929

    Google Scholar 

  • Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329:1–25

    Article  CAS  Google Scholar 

  • Chabot R, Antoun H, Cescas M (1993) Stimulation de la croissance du maïs et de la laitue romaine par des microorganismes dissolvant le phosphore inorganique. Can J Microbiol 39:941–947

    Article  Google Scholar 

  • Chabot R, Antoun H, Kloepper JW, Beauchamp CHJ (1996) Root colonization of maize and lettuce by bioluminescent Rhizobium leguminosarum biovar phaseoli. Appl Environ Microbiol 62(8):2767–2772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaintreuil C, Giraud E, Prin Y, Lorquin J, Ba A, Gillis M, deLajudie P, Dreyfus B (2000) Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66:5437–5447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury ATMA, Kennedy IR (2004) Prospects and potentials for system of biological nitrogen fixation in sustainable rice production. Biol Fertil Soils 39:219–227

    Article  Google Scholar 

  • Cocking EC, Srivastava JS, Kothari SL, Davey HR (1992) Invasion of non-legume plants by diazotrophic bacteria. In: Nodulation and nitrogen fixation in rice: potential and prospects. International Rice Research Institute, Philippines, pp 119–121

    Google Scholar 

  • Cocking EC, Webser G, Batchelor CA, Davey MR (1994) Nodulation of non-legume crops. Agro-Food-Industry Hi-Tech 21–24

    Google Scholar 

  • Datta M, Palit R, Sengupta C, Pandit MK, Banerjee S (2011) Plant growth promoting rhizobacteria enhance growth and yield of chilli (Capsicum annuum L.) under field conditions. AJCS 5(5):531–536

    Google Scholar 

  • Deshwal VK, Dubey RC, Maheshwari DK (2003) Isolation of plant growth promoting strains of Bradyrhizobium arachis sp. with biocontrol potential against Macrophomina phaseolina causing charcoal rot of peanut. Curr Sci 84(3):443–448

    Google Scholar 

  • Dharmatilake AJ, Bauer WD (1992) Chemotaxis of Rhizobium meliloti towards nodulation gene inducing compounds from alfalfa roots. Appl Environ Microbiol 58:1156–1158

    Google Scholar 

  • Dommergues Y (1979) La fixation d’azote dans la rhizosphère des céréales à paille. Bull Tech Inf Ing Agron 336:3–7

    Google Scholar 

  • Doyle JJ, Luckow MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 131:900–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckardt NA (2006) The role of flavonoids in root nodule development and auxin transport in Medicago truncatula. Plant Cell 18:1539–1540

    Article  CAS  PubMed Central  Google Scholar 

  • FAO (2001) Word soil resources reports. FAO, Rome, p 289

    Google Scholar 

  • Flores-Félix JD, Menéndez E, Rivera LP, Marcos-García M, Martínez-Hidalgo P, Mateos PF, Martínez-Molina E, Velázquez ME, García-Fraile P, Rivas R (2013) Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sci 176:876–882

    Article  Google Scholar 

  • Frank B (1889) Ueber die Pilzsymbiose der Leguminosen. Ber Dtsch Bot Ges 7:332–346

    Google Scholar 

  • Fuentes-Ramirez LE, Caballero-Mellado J (2005) Bacterial biofertilizers. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 143–172

    Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L (2015) System plant growth promoting rhizobia: challenges and opportunities. 3. Biotech 5(4):355–377

    Google Scholar 

  • Gough C, Webster G, Vasse J, Galera C, Batchelor C, O’Callaghan K, Davey M, Kothari S, Denerie J, Cocking E (1996) Specific flavonoids stimulate intercellular colonization of nonlegumes by Azorhizobium caulinodans. In: Stacey G, Mullin B, Gresshoff PM (eds) Biology of plant microbe interactions. International Society for Molecular plant–microbe interactions. Minnesota, pp 409–415

    Google Scholar 

  • Gupta SC, Sukhlal N, Namdeo S, Paliwal KK (1998) Effect of phosphorus levels and microbial inoculants on symbiotic traits, N and P uptake, quality and yield of rainfed chickpea. In: All India coordinated project improvement of pulse. R.A.K. College of Agriculture, Sehore. 3rd European conference in Grain legumes. pp 418–419

    Google Scholar 

  • Gutiérrez-Zamora ML, Martinez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91:117–126

    Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signaling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63:3429–3444

    Article  CAS  PubMed  Google Scholar 

  • Hilali A, Prévost D, Broughton WJ, Antoun H (2001) Effets de l’inoculation avec des souches de Rhizobium leguminosarum biovar trifolii sur la croissance du blé dans deux sols du Maroc. Can J Microbiol 47:590–593

    Article  CAS  PubMed  Google Scholar 

  • Hmissi I, Gargouri S, Sifi B (2011) Attempt of wheat protection against Fusarium culmorum using Rhizobium isolates. Tunis J Plant Prot 6:75–86

    Google Scholar 

  • Höflich G (2000) Colonization and growth promotion of non-legumes by Rhizobium bacteria. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Microbial biosystems: new frontiers. Proceedings of the 8th International symposium on microbial ecology. Atlantic Canada Society for Microbial Ecology, Halifax, NS, pp 827–830

    Google Scholar 

  • Höflich G, Wiehe W, Kühn G (1994) Plant growth stimulation by inoculation with symbiotic and associative rhizosphere microorganisms. Experientia 50:897–905

    Article  Google Scholar 

  • Hongrittipun P, Youpensuk S, Rerkasem B (2014) Screening of nitrogen fixing endophytic bacteria in Oryza sativa L. J Agric Sci 6(6):66–74

    Google Scholar 

  • Husssain MB, Mehboob I, Zahir ZA, Naveed M, Asghar HN (2009) Potential of Rhizobium spp. for improving growth and yield of rice (Oryza sativa L.). Soil Environ 28(1):49–55

    Google Scholar 

  • James EK, Loureiro MF, Pott A, Pott VJ, Martins CM, Franco AA, Sprent JI (2001) Flooding tolerant legume symbioses from the Brazilian Pantanal. New Phytol 150:723–738

    Article  Google Scholar 

  • Jilani G, Akram A, Ali RM, Hafeez FY, Shamsi IH, Chaudhry AN, Chaudhry AG (2007) Enhancing crop growth, nutrients availability, economics and beneficial rhizosphere microflora through organic and biofertilizers. Ann Microbiol 57(2):177–183

    Article  CAS  Google Scholar 

  • Kennedy IR, Tchan Y (1992) Biological nitrogen fixation in non-legumes filed crops: recent advances. Plant Soil 141:93–118

    Article  CAS  Google Scholar 

  • Khokhar SN, Muzaffar AK, Mohammad FC (2001) Some characters of chickpea-nodulating rhizobia native to Thal soil. Pak J Biol Sci 4:1016–1019

    Article  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    Article  CAS  PubMed  Google Scholar 

  • Lupwayi NZ, Clayton GW, Hanson KG, Rice WA, Biederbeck VO (2004) Endophytic rhizobia in barley, wheat and canola roots. Can J Plant Sci 84:37–45

    Article  Google Scholar 

  • Matiru VN, Dakora FD (2004) Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afr J Biotechnol 3(1):1–7

    Article  CAS  Google Scholar 

  • Mazen MM, El-Batanony NH, Abd El-Monium MM, Massoud ON (2008) Cultural filtrate of Rhizobium spp. and arbuscular mycorrhiza are potential biological control agents against root rot fungal diseases of faba bean. Glob J Biotechnol Biochem 3:32–41

    Google Scholar 

  • Mazid M, Khan TA (2014) Future of bio-fertilizers in Indian agriculture: an overview. Int J Agric Food Res 3:10–23

    Google Scholar 

  • McInroy JA, Kloepper JW (1995) Population dynamics of endophytic bacteria in field-grown sweet corn and cotton. Can J Microbiol 41:895–901

    Article  CAS  Google Scholar 

  • Mehboob I, Zahir ZA, Arshad M, Tanveer A, Azam F (2011) Growth promoting activities of different rhizobium spp., in wheat. Pak J Bot 43(3):1643–1650

    Google Scholar 

  • Mia MAB, Shamsuddin ZH (2010) Rhizobium as a crop enhancer and biofertilizer for increased cereal production. Afr J Biotechnol 9(37):6001–6009

    Google Scholar 

  • Naher UA, Othman R, Shamsuddin ZHJ, Saud HM, Ismail MR (2009) Growth enhancement and root colonization of rice seedlings by Rhizobium and Corynebacterium spp. Int J Agric Biol 11:586–590

    Google Scholar 

  • O’Callaghan KJ, Stone PJ, Hu X, Griffiths DW, Davey MR, Cocking EC (2000) Effects of glucosino-lates and flavonoids on colonization of the roots of Brassica napus by Azorhizobium caulinodans ORS571. Appl Environ Microbiol 66:2185–2191

    Article  PubMed  PubMed Central  Google Scholar 

  • Osório Filho BD, Gano KA, Binz A, Lima RF, Aguilar LM, Ramirez A, Caballero-Mellado J, Sá ELS, Giongo A (2014) Rhizobia enhance growth in rice plants under flooding conditions. Am Eurasian J Agric Environ Sci 14:707–718

    Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Ridriguez-Barrueco C, Martinez-Molina E, Velazquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    Article  CAS  Google Scholar 

  • Perrine-Walker FM, Gartner E, Hocart CH, Becker A, Rolfe BG (2007) Rhizobium-initiated rice growth inhibition caused by nitric oxide accumulation. Mol Plant Microbe Interact 20:283–292

    Article  CAS  PubMed  Google Scholar 

  • Plazinski J, Rolfe BG (1985) Sym plasmid genes of Rhizobium trifolii expressed in Lingnobacter and Pseudomonas strains. J Bacteriol 162:1261–1269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prayitno J, Stefaniak J, McIver J, Weinman JJ, Dazzo FB, Ladha JK, Barraquio W, Yanni YG, Rolfe BG (1999) Interactions of rice seedlings with bacteria isolated from rice roots. Aust J Plant Physiol 26:521–535

    Article  Google Scholar 

  • Qureshi MA, Shahzad H, Imran Z, Mushtaq M, Akhtar N, Ali MA, Mujeeb F (2013) Potential of rhizobium species to enhance growth and fodder yield of maize in the presence and absence of l-tryptophan. J Anim Plant Sci 23(5):1448–1454

    CAS  Google Scholar 

  • Ramesh P (2008) Organic farming research. Organic farming in rainfed agriculture. Central Institute for Dry Land Agriculture, Hyderabad, pp 13–17

    Google Scholar 

  • Reddy PM, Ladha JK, So RB, Hernandez RJ, Ramos MC, Angeles OR, Dazzo FB, De Bruijn FJ (1997) Rhizobial communication with rice roots: induction of phenotypic changes, mode of invasion and extent of colonization. Plant Soil 194:81–98

    Article  CAS  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting Rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Saikia SP, Vanita J (2007) Biological nitrogen fixation with non-legumes: an achievable target or a dogma? Curr Sci 92(3):317–322

    CAS  Google Scholar 

  • Saini VK, Bhandarib SC, Tarafdar JC (2004) Comparison of crop yield, soil microbial C, N and P, N-fixation, nodulation and mycorrhizal infection in inoculated and non-inoculated sorghum and chickpea crops. Field Crop Res 89:39–47

    Article  Google Scholar 

  • Sawada H, Kuykendall LD, Young JM (2003) Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J Gen Appl Microbiol 49:155–179

    Article  CAS  PubMed  Google Scholar 

  • Sharif T, Khalil S, Ahmad S (2003) Effect of Rhizobium sp., on growth of pathogenic fungi under in vitro conditions. Pak J Biol Sci 6:1597–1599

    Article  Google Scholar 

  • Smith R (1992) Legume inoculant formulation and application. Can J Microbiol 38:485–492

    Article  Google Scholar 

  • Son TTN, Diep CN, Giang TTM (2006) Effect of bradyrhizobia and phosphate solubilizing bacteria application on Soybean in rotational system in the Mekong delta. Omonrice 14:48–57

    Google Scholar 

  • Szoboszlay M, White-Monsant A, Moe LA (2016) The effect of root exudate 7,4′-dihydroxyflavone and naringenin on soil bacterial community structure. PLoS One 11(1):1–16

    Article  Google Scholar 

  • Verma SC, Chowdhury SP, Tripathi AK (2004) Phylogeny based on 16S rDNA and nifH sequences of Ralstonia taiwanensis strains isolated from nitrogen-fixing nodules of Mimosa pudica in India. Can J Microbiol 50:313–322

    Article  CAS  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Wiehe W, Höflich G (1995) Survival of plant growth promoting rhizosphere bacteria in the rhizosphere of different crops and migration to non-inoculated plants under field conditions in north-east Germany. Microbiol Res 150:201–206

    Article  Google Scholar 

  • Yanni YG, Dazzo FB (2010) Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile delta. Plant Soil 336(1):129–142

    Article  CAS  Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, De Bruijn F, Stoltzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114

    Article  CAS  Google Scholar 

  • Yanni YG, Rizk RY, El-Fattah FKA, Squartini A, Corich V et al (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust J Plant Physiol 28:845–870

    CAS  Google Scholar 

  • Zhang L, Shi X, Si M, Li C, Zhu L, Zhao L, Shen X, Wang Y (2014) Rhizobium smilacinae sp. nov., an endophytic bacterium isolated from the leaf of Smilacina japonica. Antonie Van Leeuwenhoek 106(4):715–723

    Article  PubMed  Google Scholar 

  • Zhu H, Riely BK, Burns NJ, Ane JM (2006) Tracing non-legume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses. Genetics 172:2491–2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souad Zaim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zaim, S., Bekkar, A.A., Belabid, L. (2017). Rhizobium as a Crop Enhancer and Biofertilizer for Increased Non-legume Production. In: Hansen, A., Choudhary, D., Agrawal, P., Varma, A. (eds) Rhizobium Biology and Biotechnology. Soil Biology, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-64982-5_3

Download citation

Publish with us

Policies and ethics