Skip to main content

Numerical Simulation of a Resonant Cavity: Acoustical Response Under Grazing Turbulent Flow

  • Conference paper
  • First Online:
New Results in Numerical and Experimental Fluid Mechanics XI

Abstract

Helmholtz resonators play a key role as silencers in many technical applications. The aim of this work is to study the mechanism that governs the emission and reduction of noise. For the first time, we closely monitor the interaction between the acoustic field of a Helmholtz resonator’s geometry and a fully turbulent shearing flow by a Direct Numerical Simulation. The properties of a fully turbulent flat plate flow with and without a wall-mounted cavity are contrasted and compared to the Chase model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elder, S.: Edgetones versus pipetones. J. Acoust. Soc. Am. 64(6), 1721 (1978)

    Article  Google Scholar 

  2. Rockwell, D., Naudascher, E.: Self-sustained oscillations of impinging free shear layers. Annu. Rev. Fluid Mech. 11(1), 67 (1979)

    Article  Google Scholar 

  3. Howe, M.: Influence of cross-sectional shape on the conductivity of a wall aperture in mean flow. J. Sound Vib. 207(5), 601 (1997)

    Article  Google Scholar 

  4. Ma, R.: Fluid mechanics of the flow-excited Helmholtz resonator. J. Fluid Mech. 623, 1 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Rossiter, J.: Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Aeronaut. Res. Counc. Reports Memo. 3438 (1964)

    Google Scholar 

  6. Tam, C.K., Ju, H., Jones, M., Watson, W., Parrott, T.: A computational and experimental study of resonators in three dimensions. J. Sound Vib. 329(24), 5164 (2010)

    Article  Google Scholar 

  7. Roche, J., Vuillot, F., Leylekian, L.: Numerical and experimental study of resonant liners aeroacoustic absorption under grazing flow. AIAA Pap. 16, 1 (2010)

    Google Scholar 

  8. Eldredge, J., Bodony, D. Shoeybi, M.: Numerical investigation of the acoustic behavior of a multi-perforated liner. In: 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference, pp. 1–11 (2007)

    Google Scholar 

  9. Golliard, J.: Noise of Helmholtz-resonator like cavities excited by a low Mach-number turbulent flow. Ph.D. thesis, Université de Poitiers (2002)

    Google Scholar 

  10. Brouwer, J., Reiss, J., Sesterhenn, J.: Finite Volume for Complex Application VII—Methods and Theorectical Aspects, vol. 77, pp. 169–176. Springer (2014)

    Google Scholar 

  11. Reiss, J.: A family of energy stable, skew-symmetric finite difference schemes on collocated grids. J. Sci. Comput. (2015)

    Google Scholar 

  12. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Stanislas, M., Perret, L., Foucaut, J.M.: Vortical structures in the turbulent boundary layer: a possible route to a universal representation. J. Fluid Mech. 602, 327 (2008)

    Article  MATH  Google Scholar 

  14. Pirozzoli, S., Bernardini, M., Grasso, F.: Characterization of coherent vortical structures in a supersonic turbulent boundary layer. J. Fluid Mech. 613, 205 (2008)

    Article  MATH  Google Scholar 

  15. Pirozzoli, S., Bernardini, M.: Turbulence in supersonic boundary layers at moderate Reynolds number. J. Fluid Mech. 688, 120 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kooijman, G., Hirschberg, A., Golliard, J.: Acoustical response of orifices under grazing flow: Effect of boundary layer profile and edge geometry. J. Sound Vib. 315(4–5), 849 (2008)

    Article  Google Scholar 

  17. Howe, M.: Acoustics of Fluid-Structure Interactions. Cambridge Monographs on Mechanics (1998)

    Google Scholar 

  18. Alessio, S.M.: Digital Signal Processing and Spectral Analysis for Scientists. Springer (2016)

    Google Scholar 

Download references

Acknowledgements

The provision of computational resources (ACID11700) by the Federal High-Performance Computing Center Stuttgart (HLRS) are gratefully acknowledged. This work is possible through the Elsa-Neumann-Stipendium des Landes Berlin (NaFöG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewin Stein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stein, L., Reiss, J., Sesterhenn, J. (2018). Numerical Simulation of a Resonant Cavity: Acoustical Response Under Grazing Turbulent Flow. In: Dillmann, A., et al. New Results in Numerical and Experimental Fluid Mechanics XI. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 136. Springer, Cham. https://doi.org/10.1007/978-3-319-64519-3_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64519-3_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64518-6

  • Online ISBN: 978-3-319-64519-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics