Skip to main content

Itinerary Planning with Category Constraints Using a Probabilistic Approach

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10439))

Included in the following conference series:

Abstract

We propose a probabilistic approach for finding approximate solutions to rooted orienteering problems with category constraints. The basic idea is to select nodes from the input graph according to a probability distribution considering properties such as the reward of a node, the attractiveness of its neighborhood, its visiting time, and its proximity to the direct route from source to destination. In this way, we reduce the size of the input considerably, resulting in a much faster execution time. Surprisingly, the quality of the generated solutions does not suffer significantly compared to the optimal ones. We illustrate the effectiveness of our approach with an experimental evaluation also including real-world data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The algorithm can be adapted to directed graphs.

  2. 2.

    In the code we use the Ruby notation [-2] for accessing the last but one element of an array.

  3. 3.

    Run time increases considerably for large \(t_{\text {max}}\) values, decreasing the utility for all variants, making the differences smaller.

References

  1. Blum, A., Chawla, S., Karger, D.R., Lane, T., Meyerson, A., Minkoff, M.: Approximation algorithms for orienteering and discounted-reward TSP. SIAM J. Comput. 37(2), 653–670 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bolzoni, P., Helmer, S., Wellenzohn, K., Gamper, J., Andritsos, P.: Efficient itinerary planning with category constraints. In: Proceedings of the 22nd International Conference on Advances in Geographic Information Systems (SIGSPATIAL 2014), Dallas, Texas, pp. 203–212 (2014)

    Google Scholar 

  3. Chekuri, C., Korula, N., Pál, M.: Improved algorithms for orienteering and related problems. In: SODA 2008, pp. 661–670 (2008)

    Google Scholar 

  4. Chekuri, C., Pál, M.: A recursive greedy algorithm for walks in directed graphs. In: FOCS 2005, pp. 245–253 (2005)

    Google Scholar 

  5. Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G.: A survey on algorithmic approaches for solving tourist trip design problems. J. Heuristics 20(3), 291–328 (2014)

    Article  Google Scholar 

  6. Gendreau, M., Laporte, G., Semet, F.: A branch-and-cut algorithm for the undirected selective traveling salesman problem. Networks 32(4), 263–273 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kanza, Y., Safra, E., Sagiv, Y., Doytsher, Y.: Heuristic algorithms for route-search queries over geographical data. In: ACM GIS 2008, pp. 11:1–11:10 (2008)

    Google Scholar 

  8. Keller, C.: Algorithms to solve the orienteering problem: a comparison. Eur. J. OR 41, 224–231 (1989)

    MATH  Google Scholar 

  9. Liang, Y.-C., Kulturel-Konak, S., Smith, A.: Meta heuristics for the orienteering problem. In: CEC 2002, pp. 384–389 (2002)

    Google Scholar 

  10. Lu, E.H.-C., Lin, C.-Y., Tseng, V.S.: Trip-mine: an efficient trip planning approach with travel time constraints. In: MDM 2011, pp. 152–161 (2011)

    Google Scholar 

  11. Ramesh, R., Yoon, Y.-S., Karwan, M.H.: An optimal algorithm for the orienteering tour problem. INFORMS J. Comput. 4(2), 155–165 (1992)

    Article  MATH  Google Scholar 

  12. Rice, M.N., Tsotras, V.J.: Parameterized algorithms for generalized traveling salesman problems in road networks. In: ACM GIS 2013, Orlando, Florida, pp. 114–123 (2013)

    Google Scholar 

  13. Righini, G., Salani, M.: Decremental state space relaxation strategies and initialization heuristics for solving the orienteering problem with time windows with dynamic programming. Comput. OR 36(4), 1191–1203 (2009)

    Article  MATH  Google Scholar 

  14. Sevkli, Z., Sevilgen, F.E.: Variable neighborhood search for the orienteering problem. In: Levi, A., Savaş, E., Yenigün, H., Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS, vol. 4263, pp. 134–143. Springer, Heidelberg (2006). doi:10.1007/11902140_16

    Chapter  Google Scholar 

  15. Shane, T.: Applied Computer Science. Springer, Cham (2016). doi:10.1007/978-3-319-30866-1

    Google Scholar 

  16. Singh, A., Krause, A., Guestrin, C., Kaiser, W.J., Batalin, M.A.: Efficient planning of informative paths for multiple robots. In: IJCAI 2007, pp. 2204–2211 (2007)

    Google Scholar 

  17. Tasgetiren, F., Smith, A.: A genetic algorithm for the orienteering problem. In: IEEE Congress on Evolutionary Computation (2000)

    Google Scholar 

  18. Tsiligrides, T.A.: Heuristic methods applied to orienteering. J. Oper. Res. Soc. 35(9), 797–809 (1984)

    Article  Google Scholar 

  19. Wang, Q., Sun, X., Golden, B.L., Jia, J.: Using artificial neural networks to solve the orienteering problem. Ann. OR 61, 111–120 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Helmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bolzoni, P., Persia, F., Helmer, S. (2017). Itinerary Planning with Category Constraints Using a Probabilistic Approach. In: Benslimane, D., Damiani, E., Grosky, W., Hameurlain, A., Sheth, A., Wagner, R. (eds) Database and Expert Systems Applications. DEXA 2017. Lecture Notes in Computer Science(), vol 10439. Springer, Cham. https://doi.org/10.1007/978-3-319-64471-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64471-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64470-7

  • Online ISBN: 978-3-319-64471-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics