Skip to main content

Climatology of Air Upwelling and Vertical Plasma Flow in the Terrestrial Cusp Region: Seasonal and IMF-Dependent Processes

  • Chapter
Magnetic Fields in the Solar System

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 448))

Abstract

At polar regions a continuous outflow occurs of terrestrial atmosphere into space. Thermodynamic forces are not strong enough to allow air parcels escaping the Earth’s gravity field. But due to the partial ionization of the upper atmosphere by the sun’s short-wavelength radiation electrodynamic forces can move the charged particles upward along open field lines. Already in the early space age it was recognized that considerable amounts of ionospheric ions populate the magnetosphere. In this chapter, the acceleration mechanisms of the upwelling ions at altitudes of source regions are investigated. For the first time the role of the neutral particles in the thermosphere is also included in the considerations. In our studies we make use of data from the satellites CHAMP (400 km), GRACE (500 km), and DMSP (830 km). Detailed studies are performed to analyze the conditions accompanying the upwelling of neutral and ionized particles. Here we consider average properties of field-aligned currents, thermospheric wind, and electron temperature. Also, the dependences on environmental conditions are tested. Hardly any dependence on seasons emerges either for air upwelling or for ion upflow. An important driver for the processes seems to be magnetic field reconnection between the terrestrial and interplanetary magnetic field (IMF) and with that the orientation of the IMF. Intense flows of precipitating electrons, which are caused by the merging process, play a central role for both kinds of upflow. But further drivers, different for the two species, are needed to facilitate the observed ion and neutral upwelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • André, M., Cully, C.M.: Low-energy ions: a previously hidden solar system particle population. Geophys. Res. Lett. 39, L03101 (2012). doi:10.1029/2011GL050242

    Article  ADS  Google Scholar 

  • André, M., Li, K., Eriksson, A.I.: Outflow of low-energy ions and the solar cycle. J. Geophys. Res. Space Phys. 120, 1072–1085 (2015). doi: 10.1002/2014JA020714

    Article  ADS  Google Scholar 

  • Axford, W.I.: The polar wind and the terrestrial helium budget. J. Geophys. Res. 73, 6855–6859 (1968). doi:10.1029/JA073i021p06855

    Article  ADS  Google Scholar 

  • Banks, P.M., Holzer, T.E.: The polar wind. J. Geophys. Res. 73, 6846–6854 (1968). doi:10.1029/JA073i021p06846

    Article  ADS  Google Scholar 

  • Carlson, H.C., Moen, J., Oksavik, K., Nielsen, C.P., McCrea, I.W., Pedersen, T.R., Gallop, P.: Direct observations of injection events of subauroral plasma into the polar cap. Geophys. Res. Lett. 33, L05103 (2006). doi:10.1029/2005GL025230

    Article  ADS  Google Scholar 

  • Carlson, H.C., Spain, T., Aruliah, A., Skjaeveland, A., Moen, J.: First-principles physics of cusp/polar cap thermospheric disturbances. Geophys. Res. Lett. 39, L19103 (2012). doi:10.1029/2012GL053034

    Article  ADS  Google Scholar 

  • Clemmons, J.H., Hecht, J.H., Salem, D.R., Strickland, D.J.: Thermospheric density in the Earth’s magnetic cusp as observed by the Streak mission. Geophys. Res. Lett. 35, L24103 (2008). doi:10.1029/2008GL035972

    Article  ADS  Google Scholar 

  • Coley, W.R., Heelis, R.A., Hairston, M.R.: Characteristics of high-latitude vertical plasma flow from the defense meteorological satellite program. J. Geophys. Res. 111, A11314 (2006). doi:10.1029/2005JA011553

    Article  ADS  Google Scholar 

  • Cowley, S.W.H.: Magnetosphere-ionosphere interactions: a tutorial review. In: Ohtani, S.-I., Fujii, R., Hesse, M., Lysak, R.L. (eds.) Magnetospheric current systems, pp. 91–106. American Geophysical Union, Washington, DC (2000). doi:10.1029/GM118p0091

    Chapter  Google Scholar 

  • Crowley, G., Knipp, D.J., Drake, K.A., Lei, J., Sutton, E., Lühr, H.: Thermospheric density enhancements in the dayside cusp region during strong by conditions. Geophys. Res. Lett. 37, L07110 (2010). doi:10.1029/2009GL042143

    Article  ADS  Google Scholar 

  • Demars, H.G., Schunk, R.W.: Thermospheric response to ion heating in the dayside cusp. J. Atmos. Sol. Terr. Phys. 69, 649–660 (2007). doi:10.1016/j.jastp.2006.11.002

    Article  ADS  Google Scholar 

  • Deng, Y., Fuller-Rowell, T.J., Akmaev, R.A., Ridley, A.J.: Impact of the altitudinal Joule heating distribution on the thermosphere. J. Geophys. Res. 116, A05313 (2011). doi:10.1029/2010JA016019

    Article  ADS  Google Scholar 

  • Doornbos, E., van den IJssel, J., Lühr, H., Förster, M., Koppenwallner, G.: Neutral density and crosswind determination from arbitrarily oriented multiaxis accelerometers on satellites. J. Spacecr. Rocket. 47, 580–589 (2010). doi:10.2514/1.48114

    Article  ADS  Google Scholar 

  • Emmert, J.T., Richmond, A.D., Drob, D.P.: A computationally compact representation of magnetic-apex and quasi-dipole coordinates with smooth base vectors. J. Geophys. Res. 115, A08322 (2010). doi:10.1029/2010JA015326

    Article  ADS  Google Scholar 

  • Engwall, E., Eriksson, A.I., Cully, C.M., André, M., Torbert, R., Vaith, H.: Earth’s ionospheric outflow dominated by hidden cold plasma. Nat. Geosci. 2, 24–27 (2009). doi:10.1038/ngeo387

    Article  ADS  Google Scholar 

  • Förster, M., Rentz, S., Köhler, W., Liu, H., Haaland, S.E.: IMF dependence of high-latitude thermospheric wind pattern derived from CHAMP cross-track measurements. Ann. Geophys. 26, 1581–1595 (2008). doi:10.5194/angeo-26-1581-2008

    Article  ADS  Google Scholar 

  • Hartman, W.A., Heelis, R.A.: Longitudinal variations in the equatorial vertical drift in the topside ionosphere. J. Geophys. Res. 112, A03305 (2007). doi:10.1029/2006JA011773

    Article  ADS  Google Scholar 

  • He, M., Vogt, J., Lühr, H., Sorbalo, E., Blagau, A., Le, G., Lu, G.: A high-resolution model of field-aligned currents through empirical orthogonal functions analysis (MFACE). Geophys. Res. Lett. 39, L18105 (2012). doi:10.1029/2012GL053168

    Article  ADS  Google Scholar 

  • Kervalishvili, G.N., Lühr, H.: The relationship of thermospheric density anomaly with electron temperature, small-scale FAC, and ion up-flow in the cusp region, as observed by CHAMP and DMSP satellites. Ann. Geophys. 31, 541–554 (2013). doi:10.5194/angeo-31-541-2013

    Article  ADS  Google Scholar 

  • Kervalishvili, G.N., Lühr, H.: Climatology of zonal wind and large-scale FAC with respect to the density anomaly in the cusp region: seasonal, solar cycle, and IMF B y dependence. Ann. Geophys. 32, 249–261 (2014). doi:10.5194/angeo-32-249-2014

    Article  ADS  Google Scholar 

  • King, J.H., Papitashvili, N.E.: Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data. J. Geophys. Res. 110, A02104 (2005). doi:10.1029/2004JA010649

    Article  ADS  Google Scholar 

  • Lemaire, J., Peterson, W.K., Chang, T., Schunk, R.W., Barakat, A.R., Demars, H.G., Khazanov, G.V.: History of kinetic polar wind models and early observations. J. Atmos. Sol. Terr. Phys. 69, 1901–1935 (2007). doi:10.1016/j.jastp.2007.08.011

    Article  ADS  Google Scholar 

  • Li, W., Knipp, D., Lei, J., Raeder, J.: The relation between dayside local Poynting flux enhancement and cusp reconnection. J. Geophys. Res. 116, A08301 (2011). doi:10.1029/2011JA016566

    Article  ADS  Google Scholar 

  • Liu, H., Lühr, H., Henize, V., Köhler, W.: Global distribution of the thermospheric total mass density derived from CHAMP. J. Geophys. Res. 110, A04301 (2005). doi:10.1029/2004JA010741

    Article  ADS  Google Scholar 

  • Liu, H., Lühr, H., Watanabe, S., Köhler, W., Henize, V., Visser, P.: Zonal winds in the equatorial upper thermosphere: Decomposing the solar flux, geomagnetic activity, and seasonal dependencies. J. Geophys. Res. 111, A07307 (2006). doi:10.1029/2005JA011415

    Article  ADS  Google Scholar 

  • Liu, R., Lühr, H., Ma, S.-Y.: Storm-time related mass density anomalies in the polar cap as observed by CHAMP. Ann. Geophys. 28, 165–180 (2010). doi:10.5194/angeo-28-165-2010

    Article  ADS  Google Scholar 

  • Lühr, H., Marker, S.: High-latitude thermospheric density and wind dependence on solar and magnetic activity. In: Lübken, F.-J. (ed.) Climate And Weather of the Sun-Earth System (CAWSES): Highlights from a Priority Program, pp. 189–206. Springer, Dordrecht (2013). doi:10.1007/978-94-007-4348-9

    Chapter  Google Scholar 

  • Lühr, H., Warnecke, J., Rother, M.K.A.: An algorithm for estimating field-aligned currents from single spacecraft magnetic field measurements: a diagnostic tool applied to Freja satellite data. Geosci. Remote Sens. 34, 1369–1376 (1996). doi:10.1109/36.544560

    Article  ADS  Google Scholar 

  • Lühr, H., Rother, M., Köhler, W., Ritter, P., Grunwaldt, L.: Thermospheric up-welling in the cusp region: evidence from CHAMP observations. Geophys. Res. Lett. 31, L06805 (2004). doi:10.1029/2003GL019314

    Article  ADS  Google Scholar 

  • Lühr, H., Rentz, S., Ritter, P., Liu, H., Häusler, K.: Average thermospheric wind patterns over the polar regions, as observed by CHAMP. Ann. Geophys. 25, 1093–1101 (2007). doi:10.5194/angeo-25-1093-2007

    Article  ADS  Google Scholar 

  • Miyake, W., Mukai, T., Kaya, N.: On the evolution of ion conics along the field line from EXOS-D. J. Geophys. Res. 98, 11127–11134 (1993). doi:10.1029/92JA00716

    Article  ADS  Google Scholar 

  • Pollock, C.J., Chandler, M.O., Moore, T.E., Waite Jr., J.H., Chappell, C.R., Gurnett, D.A.: A survey of upwelling ion event characteristics. J. Geophys. Res. 95, 18969–18980 (1990). doi:10.1029/JA095iA11p18969

    Article  ADS  Google Scholar 

  • Prölss, G.W.: Physics of the Earth’s Space Environment: An Introduction (translated by: Bird, M. K.). Springer, Berlin (2004). doi:10.1007/978-3-642-97123-5.

    Book  MATH  Google Scholar 

  • Prölss, G.W.: Electron temperature enhancement beneath the magnetospheric cusp. J. Geophys. Res. 111, A07304 (2006). doi:10.1029/2006JA011618

    Article  ADS  Google Scholar 

  • Reigber, Ch., Lühr, H., Schwintzer, P.: CHAMP mission status. Adv. Space Res. 30, 129–134 (2002). doi:10.1016/S0273-1177(02)00276-4

    Article  ADS  Google Scholar 

  • Rentz, S., Lühr, H.: Climatology of the cusp-related thermospheric mass density anomaly, as derived from CHAMP observations. Ann. Geophys. 26, 2807–2823 (2008). doi:10.5194/angeo-26-2807-2008

    Article  ADS  Google Scholar 

  • Rich, F.J., Hairston, M.: Large-scale convection patterns observed by DMSP. J. Geophys. Res. 99, 3827–3844 (1994). doi:10.1029/93JA03296

    Article  ADS  Google Scholar 

  • Ritter, P., Lühr, H., Doornbos, E.: Substorm-related thermospheric density and wind disturbances derived from CHAMP observations. Ann. Geophys. 28, 1207–1220 (2010). doi:10.5194/angeo-28-1207-2010

    Article  ADS  Google Scholar 

  • Rother, M., Schlegel, K., Lühr, H.: CHAMP observation of intense kilometer-scale field-aligned currents, evidence for an ionospheric Alfvén resonator, Ann. Geophys. 25, 1603–1615 (2007). doi:10.5194/angeo-25-1603-2007

    Article  ADS  Google Scholar 

  • Rother, M., Schlegel, K., Lühr, H., Cooke, D.: Validation of CHAMP electron temperature measurements by incoherent scatter radar data. Radio Sci. 45, RS6020 (2010). doi:10.1029/2010RS004445

    Article  ADS  Google Scholar 

  • Sadler, F.B., Lessard, M., Lund, E., Otto, A., Lühr, H.: Auroral precipitation/ion upwelling as a driver of neutral density enhancement in the cusp. J. Atmos. Sol. Terr. Phys., 87–88, 82–90 (2012). doi:10.1016/j.jastp.2012.03.003

    Article  ADS  Google Scholar 

  • Tapley, B.D., Bettadpur, S., Watkins, M., Reigber, C.: The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett. 31, L09607 (2004). doi:10.1029/2004GL019920

    Article  ADS  Google Scholar 

  • Thayer, J.P., Semeter, J.: The convergence of magnetospheric energy flux in the polar atmosphere. J. Atmos. Sol. Terr. Phys. 66, 807–824 (2004). doi:10.1016/j.jastp.2004.01.035

    Article  ADS  Google Scholar 

  • Thayer, J.P., Killeen, T.L., McCormac, F.G., Tschan, C.R., Ponthieu, J.-J., Spencer, N.W.: Thermospheric neutral wind signatures dependent on the east-west component of the interplanetary magnetic field for northern and southern hemispheres, as measured from dynamics explorer-2. Ann Geophys. 5A, 363–368 (1987)

    ADS  Google Scholar 

  • Wahlund, J.E., Opgenoorth, H.J., Haggstrom, I., Winser, K.J., Jones, G.O.L.: EISCAT observations of topside ionospheric ion outflows during auroral activity: revisited. J. Geophys. Res. 97, 3019–3037 (1992). doi:10.1029/91JA02438

    Article  ADS  Google Scholar 

  • Wang, H., Lühr, H., Ma, S.Y.: Solar zenith angle and merging electric field control of field-aligned currents: a statistical study of the southern hemisphere. J. Geophys. Res. 110, A03306 (2005). doi:10.1029/2004JA010530

    Article  ADS  Google Scholar 

  • Watermann, J., Stauning, P., Lühr, H., Newell, P.T., Christiansen, F., Schlegel, K.: Are small-scale field-aligned currents and magnetosheath-like particle precipitation signatures of the same low-altitude cusp? Adv. Space Res. 43, 41–46 (2009). doi:10.1016/j.asr.2008.03.031

    Article  ADS  Google Scholar 

  • Yau, A.W., Peterson, W.K., Shelley, E.G.: Quantitative parameterization of energetic ionospheric ion outflow. In: Modeling Magnetospheric Plasma, Geophysical Monograph, vol. 44, p. 211. American Geophysical Union, Washington, DC (1988)

    Chapter  Google Scholar 

  • Yau, A.W., Abe, T., Peterson, W.K.: The polar wind: recent observations. J. Atmos. Sol. Terr. Phys. 69, 1936–1983 (2007). doi:10.1016/j.jastp.2007.08.010

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The CHAMP and GRACE missions were sponsored by the Space Agency of the German Aerospace Center (DLR) through funds of the Federal Ministry of Economics and Technology. The Center for Space Sciences at the University of Texas at Dallas and the US Air Force are gratefully acknowledged for making available the DMSP thermal plasma data. The authors gratefully acknowledge the use of NASA/GSFC’s Space Physics Data Facility’s OMNIWeb service and OMNI IMF and Solar wind data. The Deutsche Forschungsgemeinschaft (DFG) supported G. N. Kervalishvili through the Priority Programme “Planetary Magnetism” SPP 1488.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guram N. Kervalishvili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Kervalishvili, G.N., Lühr, H. (2018). Climatology of Air Upwelling and Vertical Plasma Flow in the Terrestrial Cusp Region: Seasonal and IMF-Dependent Processes. In: Lühr, H., Wicht, J., Gilder, S.A., Holschneider, M. (eds) Magnetic Fields in the Solar System. Astrophysics and Space Science Library, vol 448. Springer, Cham. https://doi.org/10.1007/978-3-319-64292-5_11

Download citation

Publish with us

Policies and ethics