Skip to main content

Joint Factorizational Topic Models for Cross-City Recommendation

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10366))

Abstract

The research of personalized recommendation techniques today has mostly parted into two mainstream directions, namely, the factorization-based approaches and topic models. Practically, they aim to benefit from the numerical ratings and textual reviews, correspondingly, which compose two major information sources in various real-world systems, including Amazon, Yelp, eBay, Netflix, and many others.

However, although the two approaches are supposed to be correlated for their same goal of accurate recommendation, there still lacks a clear theoretical understanding of how their objective functions can be mathematically bridged to leverage the numerical ratings and textual reviews collectively, and why such a bridge is intuitively reasonable to match up their learning procedures for the rating prediction and top-N recommendation tasks, respectively.

In this work, we exposit with mathematical analysis that, the vector-level randomization functions to harmonize the optimization objectives of factorizational and topic models unfortunately do not exist at all, although they are usually pre-assumed and intuitively designed in the literature.

Fortunately, we also point out that one can simply avoid the seeking of such a randomization function by optimizing a Joint Factorizational Topic (JFT) model directly. We further apply our JFT model to the cross-city Point of Interest (POI) recommendation tasks for performance validation, which is an extremely difficult task for its inherent cold-start nature. Experimental results on real-world datasets verified the appealing performance of our approach against previous methods with pre-assumed randomization functions in terms of both rating prediction and top-N recommendation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://nlp.stanford.edu/software/lex-parser.shtml.

References

  1. Aciar, S., Zhang, D., Simoff, S., Debenham, J.: Informed recommender: basing recommendations on consumer product reviews. Intell. Syst. 22(3), 39–47 (2007)

    Article  Google Scholar 

  2. Agarwal, D., Chen, B.C.: fLDA: matrix factorization through latent Dirichlet allocation. In: WSDM (2010)

    Google Scholar 

  3. Baatarjav, E.-A., Phithakkitnukoon, S., Dantu, R.: Group recommendation system for Facebook. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2008. LNCS, vol. 5333, pp. 211–219. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88875-8_41

    Chapter  Google Scholar 

  4. Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012)

    Article  Google Scholar 

  5. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. JMLR 2003(3), 993–1022 (2003)

    MATH  Google Scholar 

  6. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-N recommendation tasks. In: RecSys pp. 39–46 (2010)

    Google Scholar 

  7. Das, A., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online collaborative filtering. In: WWW pp. 271–280 (2007)

    Google Scholar 

  8. Davidson, J., Liebald, B., Liu, J., et al.: The YouTube video recommendation system. In: RecSys, pp. 293–296 (2010)

    Google Scholar 

  9. Ganu, G., Elhadad, N., Marian, A.: Beyond the stars: improving rating predictions using review text content. In: WebDB (2009)

    Google Scholar 

  10. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: ICDM (2008)

    Google Scholar 

  11. Jakob, N., Weber, S.H., Müller, M.C., et al.: Beyond the stars: exploiting free-text user reviews to improve the accuracy of movie recommendations. In: TSA (2009)

    Google Scholar 

  12. Knott, M., Bartholomew, D.: Latent Variable Models and Factor Analysis. Kendall’s Library of Statistics 2 (1999)

    Google Scholar 

  13. Ko, M., Kim, H.W., Yi, M.Y., Song, J., Liu, Y.: MovieCommenter: aspect-based collaborative filtering by utilizing user comments. In: CollaborateCom (2011)

    Google Scholar 

  14. Konstan, J.A., Riedl, J.: Recommender systems: from algorithms to user experience. User Model. User-Adap. Interact. 22(1–2), 101–123 (2012)

    Article  Google Scholar 

  15. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42, 8 (2009)

    Article  Google Scholar 

  16. Koren, Y., Bell, R.: Advances in Collaborative Filtering. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 145–186. Springer, Heidelberg (2011). doi:10.1007/978-0-387-85820-3_5

    Chapter  Google Scholar 

  17. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Proceedings of NIPS (2001)

    Google Scholar 

  18. Lika, B., Kolomvatsos, K., Hadjiefthymiades, S.: Facing the cold start problem in recommender systems. Expert Syst. Appl. 41(4), 2065–2073 (2014)

    Article  Google Scholar 

  19. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering. Internet Comput. 7(1), 76–80 (2003)

    Article  Google Scholar 

  20. Ling, G., Lyu, M.R., King, I.: Ratings meet reviews: a combined approach to recommend. In: RecSys (2014)

    Google Scholar 

  21. McAuley, J., Leskovec, J.: Hidden factors and hidden topics: understanding rating dimensions with review text. In: RecSys, pp. 165–172 (2013)

    Google Scholar 

  22. Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72079-9_10

    Chapter  Google Scholar 

  23. Purushotham, S., Liu, Y., Kuo, C.C.J.: collaborative topic regression with social matrix factorization for recommendation systems. In: ICML (2012)

    Google Scholar 

  24. Rendle, S., Freudenthaler, C., Gantner, Z., Thieme, L.S.: BPR: Bayesian Personalized Ranking from implicit feedback. In: UAI (2009)

    Google Scholar 

  25. Ricci, F., Rokach, L., Shapira, B.: Introduction to Recommender Systems Handbook. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  26. Salakhutdinov, R., Mnih, A.: Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In: Proceedings of ICML (2008)

    Google Scholar 

  27. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: Proceedings of NIPS (2008)

    Google Scholar 

  28. Srebro, N., Rennie, J.D.M., Jaakkola, T.S.: Maximum-margin matrix factorization. In: NIPS (2005)

    Google Scholar 

  29. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. In: Advances in AI, p. 4 (2009)

    Google Scholar 

  30. Takacs, G., Pilaszy, I., Nemeth, B., Tikk, D.: Investigation of various matrix factorization methods for large recommender systems. In: Proceedings of ICDM (2008)

    Google Scholar 

  31. Terzi, M., Ferrario, M.A., Whittle, J.: Free text in user reviews: their role in recommender systems. In: RecSys (2011)

    Google Scholar 

  32. Wang, C., Blei, D.M.: Collaborative topic modeling for recommending scientific articles. In: KDD (2011)

    Google Scholar 

  33. Xu, X., Datta, A., Dutta, K.: Using adjective features from user reviews to generate higher quality and explainable recommendations. IFIP Advances in Info. and Com. Tech. 389, 18–34 (2012)

    Google Scholar 

  34. Zhang, Y., Lai, G., Zhang, M., Zhang, Y., Liu, Y., Ma, S.: Explicit factor models for explainable recommendation based on phrase-level sentiment analysis. In: SIGIR (2014)

    Google Scholar 

  35. Zhang, Y., Zhang, H., Zhang, M., Liu, Y., et al.: Do users rate or review? boost phrase-level sentiment labeling with review-level sentiment classification. In: SIGIR (2014)

    Google Scholar 

Download references

Acknowledgement

We thank the reviewers for their valuable suggestions. This work is supported by Natural Science Foundation of China (Grant Nos. 61532011, 61672311) and National Key Basic Research Program (2015CB358700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Xiao .

Editor information

Editors and Affiliations

Appendix

Appendix

Let \(\gamma \) denote arbitrary vectors with length K , and \(\mathcal {F}\) is the set of all randomization functions \(f:\mathbb {R}^K\rightarrow \mathbb {R}^K\) satisfying:

$$\begin{aligned} \left\{ \begin{aligned}&0 \le f(\gamma )_{i} \le 1, \Vert f(\gamma )\Vert _1 = 1\\&\gamma _{i}< \gamma _{j} \rightarrow f(\gamma )_{i} < f(\gamma )_{j} \end{aligned} \right. ,\forall \gamma \in \mathbb {R}^{K},1\le i,j \le K \end{aligned}$$
(20)

then there exists no randomization function \(f\in \mathcal {F}\) with the product-level monotonic property of:

$$\begin{aligned} \gamma _{1}\cdot \gamma _{2}<\gamma _{3}\cdot \gamma _{4}\rightarrow f(\gamma _{1})\cdot f(\gamma _{2})<f(\gamma _{3})\cdot f(\gamma _{4}),~\forall \gamma _1,\gamma _2,\gamma _3,\gamma _4 \end{aligned}$$
(21)

Proof: Suppose there exists a randomization function \(f\in \mathcal {F}\) that meets Eq. (21). Let \(t>1\), and let \(\alpha \) and \(\beta \) be vectors with \(\alpha \cdot \beta >0\), then we have \(t\alpha \cdot \beta >\alpha \cdot \beta \). By applying the property of product-level monotonic in Eq. (21) we have:

$$\begin{aligned} f(t\alpha )\cdot f(\beta )>f(\alpha )\cdot f(\beta ) \end{aligned}$$
(22)

and this can be equivalently written as:

$$\begin{aligned} \big (f(t\alpha )-f(\alpha )\big )\cdot f(\beta )>0 \end{aligned}$$
(23)

Let \(\varDelta \doteq f(t\alpha ) - f(\alpha )\), and according to the definition of randomization function in Eq. (20), we know that \(\sum _{k}f(t\alpha )_{k}= \sum _{k}f(\alpha )_{k} = 1\), thus we have:

$$\begin{aligned} \sum \nolimits _{k}\varDelta _{k} = \sum \nolimits _{k}\big (f(t\alpha ) - f(\alpha )\big )_{k} = 0 \end{aligned}$$
(24)

According to Eq. (23) we know that \(\varDelta \ne \mathbf 0 \). Let \(\mathcal {P}\) denote the indices of all positive elements in vector \(\varDelta \), and \(\mathcal {N}\) denote the indices of negative elements. We have:

$$\begin{aligned} \sum \nolimits _{k\in \mathcal {P}}\varDelta _{k}+\sum \nolimits _{k\in \mathcal {N}}\varDelta _{k}=0 \end{aligned}$$
(25)

As Eq. (23) holds for any \(\beta \) with \(\alpha \cdot \beta >0\), without loss of generally, let \(\beta \) be a vector where \(\beta _{k\in \mathcal {P}}=0\) and \(\beta _{k\in \mathcal {N}}=1\). According to the vector-level monotonic property in Eq. (20) and the fact that \(0<1\), we have \(f(\beta )_{k\in \mathcal {P}}<f(\beta )_{k\in \mathcal {N}}\) and \(0\le f(\beta )_{k\in \mathcal {P}\cup \mathcal {N}}\le 1\). Combined with Eq. (25), we further obtain the following:

$$\begin{aligned} \varDelta \cdot f(\beta )=\sum _{k\in \mathcal {P}}\varDelta _{k}f(\beta )_k+\sum _{k\in \mathcal {N}}\varDelta _{k}f(\beta )_k<0 \end{aligned}$$
(26)

which is a direct contradiction with Eq. (23). As a result, there exists no randomization function \(f\in \mathcal {F}\) that satisfies the product-level monotonic property in Eq. (21).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xiao, L., Min, Z., Yongfeng, Z. (2017). Joint Factorizational Topic Models for Cross-City Recommendation. In: Chen, L., Jensen, C., Shahabi, C., Yang, X., Lian, X. (eds) Web and Big Data. APWeb-WAIM 2017. Lecture Notes in Computer Science(), vol 10366. Springer, Cham. https://doi.org/10.1007/978-3-319-63579-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63579-8_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63578-1

  • Online ISBN: 978-3-319-63579-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics