Skip to main content

Sound Analysis in Smart Cities

  • Chapter
  • First Online:
Computational Analysis of Sound Scenes and Events

Abstract

This chapter introduces the concept of smart cities and discusses the importance of sound as a source of information about urban life. It describes a wide range of applications for the computational analysis of urban sounds and focuses on two high-impact areas, audio surveillance, and noise pollution monitoring, which sit at the intersection of dense sensor networks and machine listening. For sensor networks we focus on the pros and cons of mobile versus static sensing strategies, and the description of a low-cost solution to acoustic sensing that supports distributed machine listening. For sound event detection and classification we focus on the challenges presented by this task, solutions including feature design and learning strategies, and how a combination of convolutional networks and data augmentation result in the current state of the art. We close with a discussion about the potential and challenges of mobile sensing, the limitations imposed by the data currently available for research, and a few areas for future exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS.

  2. 2.

    https://wp.nyu.edu/sonyc/.

  3. 3.

    https://xiph.org/flac/.

  4. 4.

    http://www.cs.tut.fi/sgn/arg/dcase2016/.

  5. 5.

    http://www.cs.tut.fi/sgn/arg/dcase2016/task-results-acoustic-scene-classification.

  6. 6.

    https://nycopendata.socrata.com/data.

  7. 7.

    http://serv.cusp.nyu.edu/projects/urbansounddataset/.

  8. 8.

    http://www.freesound.org.

  9. 9.

    http://audacity.sourceforge.net/.

  10. 10.

    http://serv.cusp.nyu.edu/projects/urbansounddataset/.

  11. 11.

    http://www.shotspotter.com/.

  12. 12.

    https://research.googleblog.com/2016/09/announcing-youtube-8m-large-and-diverse.html.

  13. 13.

    https://wp.nyu.edu/sonyc/.

References

  1. Andén, J., Mallat, S.: Multiscale scattering for audio classification. In: 12th International Society for Music Information Retrieval Conference, Miami, pp. 657–662 (2011)

    Google Scholar 

  2. Andén, J., Mallat, S.: Scattering representation of modulated sounds. In: 15th DAFx, York (2012)

    Google Scholar 

  3. Andén, J., Mallat, S.: Deep scattering spectrum. IEEE Trans. Signal Process. 62(16), 4114–4128 (2014)

    Article  MathSciNet  Google Scholar 

  4. Atzmueller, M., Becker, M., Doerfel, S., Hotho, A., Kibanov, M., Macek, B., Mitzlaff, F., Mueller, J., Scholz, C., Stumme, G.: Ubicon: observing physical and social activities. In: 2012 IEEE International Conference on Green Computing and Communications (GreenCom), pp. 317–324. IEEE, New York (2012)

    Google Scholar 

  5. Aucouturier, J., Defreville, B., Pachet, F.: The bag-of-frames approach to audio pattern recognition: a sufficient model for urban soundscapes but not for polyphonic music. J. Acoust. Soc. Am. 122(2), 881–891 (2007)

    Article  Google Scholar 

  6. Barham, R., Goldsmith, M., Chan, M., Simmons, D., Trowsdale, L., Bull, S.: Development and performance of a multi-point distributed environmental noise measurement system using mems microphones. In: Proceedings of the 8th European Conference on Noise Control (Euronoise 2009) (2009)

    Google Scholar 

  7. Barham, R., Chan, M., Cand, M.: Practical experience in noise mapping with a MEMS microphone based distributed noise measurement system. In: 39th International Congress and Exposition on Noise Control Engineering (Internoise 2010) (2010)

    Google Scholar 

  8. Basner, M., Babisch, W., Davis, A., Brink, M., Clark, C., Janssen, S., Stansfeld, S.: Auditory and non-auditory effects of noise on health. The Lancet 383(9925), 1325–1332 (2014)

    Article  Google Scholar 

  9. Baxter, K.C., Fisher, K.: Gunshot detection sensor with display. US Patent 7,266,045, 2007

    Google Scholar 

  10. Becker, M., Caminiti, S., Fiorella, D., Francis, L., Gravino, P., Haklay, M.M., Hotho, A., Loreto, V., Mueller, J., Ricchiuti, F., et al.: Awareness and learning in participatory noise sensing. PLoS One 8(12), e81638 (2013)

    Article  Google Scholar 

  11. Becker, M., Mueller, J., Hotho, A., Stumme, G.: A generic platform for ubiquitous and subjective data. In: Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, pp. 1175–1182. ACM, New York (2013)

    Google Scholar 

  12. Bell, M.C., Galatioto, F.: Novel wireless pervasive sensor network to improve the understanding of noise in street canyons. Appl. Acoust. 74(1), 169–180 (2013)

    Article  Google Scholar 

  13. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: 19th International Conference on Computational Statistics (COMPSTAT), Paris, pp. 177–186 (2010)

    Google Scholar 

  14. Bronzaft, A.L.: The effect of a noise abatement program on reading ability. J. Environ. Psychol. 1(3), 215–222 (1981)

    Article  Google Scholar 

  15. Bronzaft, A.: Neighborhood noise and its consequences. Survey Research Unit, School of Public Affairs, Baruch College, New York (2007)

    Google Scholar 

  16. Brown, A.L., Kang, J., Gjestland, T.: Towards standardization in soundscape preference assessment. Appl. Acoust. 72(6), 387–392 (2011)

    Article  Google Scholar 

  17. Bruel & Kjaer Noise Monitoring Terminal Type 3639 (2015). http://www.bksv.com/Products/EnvironmentManagementSolutions/UrbanEnvironmentManagement/NoiseInstrumentation/NoiseMonitoringTerminalFamily

  18. Burke, J.A., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, M.B.: Participatory sensing. Center for Embedded Network Sensing (2006)

    Google Scholar 

  19. Cai, L.H., Lu, L., Hanjalic, A., Zhang, H.J., Cai, L.H.: A flexible framework for key audio effects detection and auditory context inference. IEEE Trans. Audio Speech Lang. Process. 14(3), 1026–1039 (2006). doi:10.1109/TSA.2005.857575

    Article  Google Scholar 

  20. Cakir, E., Heittola, T., Huttunen, H., Virtanen, T.: Polyphonic sound event detection using multi label deep neural networks. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (2015)

    Google Scholar 

  21. Campbell, A.T., Eisenman, S.B., Lane, N.D., Miluzzo, E., Peterson, R.A.: People-centric urban sensing. In: Proceedings of the 2nd Annual International Workshop on Wireless Internet, p. 18. ACM, New York (2006)

    Google Scholar 

  22. Carlyon, R.: How the brain separates sounds. Trends Cogn. Sci. 8(10), 465–471 (2004)

    Article  Google Scholar 

  23. Chaudhuri, S., Raj, B.: Unsupervised hierarchical structure induction for deeper semantic analysis of audio. In: IEEE ICASSP, pp. 833–837 (2013). doi:10.1109/ICASSP.2013.6637765

    Google Scholar 

  24. Chu, S., Narayanan, S., Kuo, C.C.J., Mataric, M.J.: Where am I? scene recognition for mobile robots using audio features. In: 2006 IEEE International Conference on Multimedia and Expo, pp. 885–888. IEEE, New York (2006)

    Google Scholar 

  25. Chu, S., Narayanan, S., Kuo, C.C.: Environmental sound recognition with time-frequency audio features. IEEE Trans. Audio Speech Lang. Process. 17(6), 1142–1158 (2009). doi:10.1109/TASL.2009.2017438

    Article  Google Scholar 

  26. Coates, A., Ng, A.Y.: Learning feature representations with K-means. In: Neural Networks: Tricks of the Trade, pp. 561–580. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  27. Cristani, M., Bicego, M., Murino, V.: On-line adaptive background modelling for audio surveillance. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004 (ICPR 2004), vol. 2, pp. 399–402. IEEE, New York (2004)

    Google Scholar 

  28. Cristani, M., Bicego, M., Murino, V.: Audio-visual event recognition in surveillance video sequences. IEEE Trans. Multimedia 9(2), 257–267 (2007)

    Article  Google Scholar 

  29. Cristani, M., Raghavendra, R., Bue, A.D., Murino, V.: Human behavior analysis in video surveillance: a social signal processing perspective. Neurocomputing 100, 86–97 (2013)

    Article  Google Scholar 

  30. Dhillon, I., Modha, D.: Concept decompositions for large sparse text data using clustering. Mach. Learn. 42(1), 143–175 (2001)

    Article  MATH  Google Scholar 

  31. D’Hondt, E., Stevens, M., Jacobs, A.: Participatory noise mapping works! an evaluation of participatory sensing as an alternative to standard techniques for environmental monitoring. Pervasive Mob. Comput. 9(5), 681–694 (2013)

    Article  Google Scholar 

  32. Dieleman, S., Schrauwen, B.: Multiscale approaches to music audio feature learning. In: 14th ISMIR, Curitiba (2013)

    Google Scholar 

  33. Eghbal-Zadeh, H., Lehner, B., Dorfer, M., Widmer, G.: CP-JKU submissions for DCASE-2016: a hybrid approach using binaural i-vectors and deep convolutional neural networks. Technical report, DCASE2016 Challenge (2016)

    Google Scholar 

  34. Ellis, D.P.W., Lee, K.: Minimal-impact audio-based personal archives. In: 1st ACM workshop on Continuous Archival and Retrieval of Personal Experiences, New York, NY, pp. 39–47 (2004)

    Google Scholar 

  35. First report of the Interdepartmental Group on Costs and Benefits, Noise Subject Group: An economic valuation of noise pollution – developing a tool for policy appraisal. Department for Environment, Food and Rural Affairs (2008)

    Google Scholar 

  36. Foresti, G.: A real-time system for video surveillance of unattended outdoor environments. IEEE Trans. Circuits Syst. Video Technol. 8(6), 697–704 (1998)

    Article  Google Scholar 

  37. García, A.: Environmental Urban Noise. Wentworth Institute of Technology Press, Boston, MA (2001)

    Google Scholar 

  38. Giannoulis, D., Benetos, E., Stowell, D., Plumbley, M.D.: IEEE AASP challenge on detection and classification of acoustic scenes and events - public dataset for scene classification task. Technical report, Queen Mary University of London (2012)

    Google Scholar 

  39. Giannoulis, D., Stowell, D., Benetos, E., Rossignol, M., Lagrange, M., Plumbley, M.D.: A database and challenge for acoustic scene classification and event detection. In: 21st EUSIPCO (2013)

    Google Scholar 

  40. Grootel, M., Andringa, T., Krijnders, J.: DARES-G1: Database of annotated real-world everyday sounds. In: Proceedings of the NAG/DAGA Meeting 2009, Rotterdam (2009)

    Google Scholar 

  41. Guillaume, G., Can, A., Petit, G., Fortin, N., Palominos, S., Gauvreau, B., Bocher, E., Picaut, J.: Noise mapping based on participative measurements. Noise Mapp. 3(1), 140–156 (2016)

    Google Scholar 

  42. Hammer, M.S., Swinburn, T.K., Neitzel, R.L.: Environmental noise pollution in the United States: developing an effective public health response. Environ. Health Perspect. 122(2), 115–119 (2014)

    Google Scholar 

  43. Heinrich, U.R., Feltens, R.: Mechanisms underlying noise-induced hearing loss. Drug Discov. Today Dis. Mech. 3(1), 131–135 (2006)

    Article  Google Scholar 

  44. Heittola, T., Mesaros, A., Eronen, A., Virtanen, T.: Context-dependent sound event detection. EURASIP J. Audio Speech Music Process. 2013, 1 (2013)

    Google Scholar 

  45. Kanjo, E.: Noisespy: a real-time mobile phone platform for urban noise monitoring and mapping. Mob. Netw. Appl. 15(4), 562–574 (2010)

    Article  Google Scholar 

  46. Kivelä, I., Gao, C., Luomala, J., Ihalainen, J., Hakala, I.: Design of networked low-cost wireless noise measurement sensors. Sensors Transducers 10, 171 (2011)

    Google Scholar 

  47. Krizhevsky, A.: The ZCA whitening transformation. Appendix A of learning multiple layers of features from tiny images, Technical Report, University of Toronto (2009)

    Google Scholar 

  48. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 1097–1105 (2012)

    Google Scholar 

  49. Larson Davis Model 831-NMS permanent noise monitoring system (2015). http://www.larsondavis.com/Products/NoiseMonitoringSystems/PermanentNoiseMonitoringSystem

  50. Lecomte, S., Lengellé, R., C. Richard, C., Capman, F., Ravera, B.: Abnormal events detection using unsupervised one-class svm-application to audio surveillance and evaluation. In: 2011 8th IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS), pp. 124–129. IEEE, New York (2011)

    Google Scholar 

  51. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  52. Libelium smart cities board technical guide (2015). http://www.libelium.com/development/waspmote/documentation/smart-cities-board-technical-guide/

  53. Lin, W., Sun, M., Poovendran, R., Zhang, Z.: Group event detection for video surveillance. In: 2009 IEEE International Symposium on Circuits and Systems, pp. 2830–2833. IEEE, New York (2009)

    Google Scholar 

  54. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  55. Ma, Y.F., Lu, L., Zhang, H.J., Li, M.: A user attention model for video summarization. In: 10th ACM International Conference on Multimedia, pp. 533–542 (2002)

    Google Scholar 

  56. Maisonneuve, N., Stevens, M., Ochab, B.: Participatory noise pollution monitoring using mobile phones. Inf. Polity 15(1), 51–71 (2010)

    Google Scholar 

  57. McAdams, S.: Spectral fusion, spectral parsing and the formation of auditory images. Ph.D. thesis, Stanford University, Stanford (1984)

    Google Scholar 

  58. McFee, B., Humphrey, E., Bello, J.: A software framework for musical data augmentation. In: 16th International Society for Music Information Retrieval Conference, pp. 248–254. Malaga, Spain (2015)

    Google Scholar 

  59. Mesaros, A., Heittola, T., Virtanen, T.: TUT database for acoustic scene classification and sound event detection. In: 24th European Signal Processing Conference (EUSIPCO), Budapest (2016)

    Google Scholar 

  60. Mietlicki, F., Mietlicki, C., Sineau, M.: An innovative approach for long-term environmental noise measurement: Rumeur network. In: 10th European Congress and Exposition on Noise Control Engineering (EuroNoise), Maastricht (2015)

    Google Scholar 

  61. Muzet, A., et al.: The need for a specific noise measurement for population exposed to aircraft noise during night-time. Noise Health 4(15), 61 (2002)

    Google Scholar 

  62. Neitzel, R.L., Gershon, R.R., McAlexander, T.P., Magda, L.A., Pearson, J.M.: Exposures to transit and other sources of noise among New York City residents. Environ. Sci. Technol. 46(1), 500–508 (2011)

    Article  Google Scholar 

  63. Nelson, J.P.: Airports and property values: a survey of recent evidence. J. Transp. Econ. Policy 14, 37–52 (1980)

    Google Scholar 

  64. Nelson, J.P.: Highway noise and property values: a survey of recent evidence. J. Trans. Econ. Policy 16, 117–138 (1982)

    Google Scholar 

  65. New York City Department of Health and Mental Hygiene: Ambient Noise Disruption in New York City, Data brief 45. New York City Department of Health and Mental Hygiene, NY (2014)

    Google Scholar 

  66. NYC 311 Website. http://www1.nyc.gov/311/

  67. Payne, S.R., Davies, W.J., Adams, M.D.: Research into the Practical and Policy Applications of Soundscape Concepts and Techniques in Urban Areas. DEFRA, HMSO, London (2009)

    Google Scholar 

  68. Piczak, K.J.: Environmental sound classification with convolutional neural networks. In: 25th International Workshop on Machine Learning for Signal Processing (MLSP), Boston, MA, pp. 1–6 (2015). doi:10.1109/MLSP.2015.7324337

    Google Scholar 

  69. Rabaoui, A., Davy, M., Rossignol, S., Ellouze, N.: Using one-class svms and wavelets for audio surveillance. IEEE Trans. Inf. Forensics Secur. 3(4), 763–775 (2008)

    Article  Google Scholar 

  70. Radhakrishnan, R., Divakaran, A., Smaragdis, P.: Audio analysis for surveillance applications. In: IEEE WASPAA’05, pp. 158–161 (2005). doi:10.1109/ASPAA.2005.1540194

    Google Scholar 

  71. Rakotomamonjy, A., Gasso, G.: Histogram of gradients of time-frequency representations for audio scene classification. IEEE/ACM Trans. Audio Speech Lang. Process. 23(1), 142–153 (2015). doi:10.1109/TASLP.2014.2375575

    Google Scholar 

  72. Rana, R.K., Chou, C.T., Kanhere, S.S., Bulusu, N., Hu, W.: Ear-phone: an end-to-end participatory urban noise mapping system. In: Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, pp. 105–116. ACM (2010)

    Google Scholar 

  73. Ruge, L., Altakrouri, B., Schrader, A.: Soundofthecity-continuous noise monitoring for a healthy city. In: 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 670–675. IEEE, New York (2013)

    Google Scholar 

  74. Salamon, J., Bello, J.P.: Feature learning with deep scattering for urban sound analysis. In: 2015 European Signal Processing Conference, Nice (2015)

    Google Scholar 

  75. Salamon, J., Bello, J.P.: Unsupervised feature learning for urban sound classification. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane (2015)

    Google Scholar 

  76. Salamon, J., Bello, J.P.: Deep convolutional neural networks and data augmentation for environmental sound classification. IEEE Signal Process. Lett. 24(3), 279–283 (2017)

    Article  Google Scholar 

  77. Salamon, J., Jacoby, C., Bello, J.P.: A dataset and taxonomy for urban sound research. In: 22nd ACM International Conference on Multimedia (ACM-MM’14), Orlando, FL, pp. 1041–1044 (2014)

    Google Scholar 

  78. Salamon, J., Bello, J.P., Farnsworth, A., Kelling, S.: Fusing shallow and deep learning for bioacoustic bird species classification. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, pp. 141–145 (2017)

    Google Scholar 

  79. Santini, S., Ostermaier, B., Adelmann, R.: On the use of sensor nodes and mobile phones for the assessment of noise pollution levels in urban environments. In: 2009 6th International Conference on Networked Sensing Systems (INSS), pp. 1–8. IEEE, New York (2009)

    Google Scholar 

  80. Saxena, S., Brémond, F., Thonnat, M., Ma, R.: Crowd behavior recognition for video surveillance. In: International Conference on Advanced Concepts for Intelligent Vision Systems, pp. 970–981. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  81. Schweizer, I., Meurisch, C., Gedeon, J., Bärtl, R., Mühlhäuser, M.: Noisemap: multi-tier incentive mechanisms for participative urban sensing. In: Proceedings of the 3rd International Workshop on Sensing Applications on Mobile Phones, p. 9. ACM, New York (2012)

    Google Scholar 

  82. Serizel, R., Bisot, V., Essid, S., Richard, G.: Machine listening techniques as a complement to video image analysis in forensics. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 948–952. IEEE, New York (2016)

    Google Scholar 

  83. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: International Conference on Document Analysis and Recognition, vol. 3, Edinburgh, Scottland, pp. 958–962 (2003)

    Google Scholar 

  84. Smith, D., Ma, L., Ryan, N.: Acoustic environment as an indicator of social and physical context. Pers. Ubiquit. Comput. 10(4), 241–254 (2006). doi:10.1007/s00779-005-0045-4. http://dx.doi.org/10.1007/s00779-005-0045-4

    Article  Google Scholar 

  85. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  86. Stowell, D., Plumbley, M.D.: Automatic large-scale classification of bird sounds is strongly improved by unsupervised feature learning. PeerJ 2, e488 (2014). doi:10.7717/peerj.488. http://dx.doi.org/10.7717/peerj.488

    Article  Google Scholar 

  87. Taber, R.: Technology for a quieter america, national academy of engineering. Technical report, NAEPR-06-01-A (2007)

    Google Scholar 

  88. Thrun, S., Bennewitz, M., Burgard, W., Cremers, A., Dellaert, F., Fox, D., Haehnel, D., Rosenberg, C., Roy, N., Schulte, J., et al.: Minerva: a second geration mobile tour-guide robot. In: IEEE International Conference on Robotics and Automation, pp. 3136–3141 (1999)

    Google Scholar 

  89. Valenzise, G., Gerosa, L., Tagliasacchi, M., Antonacci, F., Sarti, A.: Scream and gunshot detection and localization for audio-surveillance systems. In: IEEE Conference on Advanced Video and Signal Based Surveillance, 2007 (AVSS 2007), pp. 21–26 (2007)

    Book  Google Scholar 

  90. Van Kempen, E., Babisch, W.: The quantitative relationship between road traffic noise and hypertension: a meta-analysis. J. Hypertens. 30(6), 1075–1086 (2012)

    Article  Google Scholar 

  91. Van Renterghem, T., Thomas, P., Dominguez, F., Dauwe, S., Touhafi, A., Dhoedt, B., Botteldooren, D.: On the ability of consumer electronics microphones for environmental noise monitoring. J. Environ. Monit. 13(3), 544–552 (2011)

    Article  Google Scholar 

  92. Wicke, L.: Die ökologischen Milliarden: das kostet die zerstörte Umwelt-so können wir sie retten. Kösel, Munich (1986)

    Google Scholar 

  93. Xu, M., Xu, C., Duan, L., Jin, J.S., Luo, S.: Audio keywords generation for sports video analysis. ACM Trans. Multimed. Comput. Commun. Appl. 4(2), 1–23 (2008)

    Article  Google Scholar 

  94. Yanco, H.A.: Wheelesley: a robotic wheelchair system: Indoor navigation and user interface. In: Assistive Technology and Artificial Intelligence, pp. 256–268. Springer, Berlin, Heidelberg (1998)

    Google Scholar 

  95. Yost, W.: Auditory image perception and analysis: the basis for hearing. Hear. Res. 56(1), 8–18 (1991)

    Article  Google Scholar 

  96. Zajdel, W., Krijnders, J., Andringa, T., Gavrila, D.: Cassandra: audio-video sensor fusion for aggression detection. In: IEEE Conference on Advanced Video and Signal Based Surveillance, 2007. AVSS 2007, pp. 200–205. IEEE, New York (2007)

    Google Scholar 

  97. Ziliani, F., Cavallaro, A.: Image analysis for video surveillance based on spatial regularization of a statistical model-based change detection. In: Proceedings of IEEE International Conference on Image Analysis and Processing, pp. 1108–1111. IEEE, New York (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Bello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Bello, J.P., Mydlarz, C., Salamon, J. (2018). Sound Analysis in Smart Cities. In: Virtanen, T., Plumbley, M., Ellis, D. (eds) Computational Analysis of Sound Scenes and Events. Springer, Cham. https://doi.org/10.1007/978-3-319-63450-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63450-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63449-4

  • Online ISBN: 978-3-319-63450-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics