Skip to main content

Redox-Dependent Calpain Signaling in Airway and Pulmonary Vascular Remodeling in COPD

  • Chapter
  • First Online:
Pulmonary Vasculature Redox Signaling in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 967))

Abstract

The calcium-dependent cytosolic, neutral, thiol endopeptidases, calpains, perform limited cleavage of their substrates thereby irreversibly changing their functions. Calpains have been shown to be involved in several physiological processes such as cell motility, proliferation, cell cycle, signal transduction, and apoptosis. Overactivation of calpain or mutations in the calpain genes contribute to a number of pathological conditions including neurodegenerative disorders, rheumatoid arthritis, cancer, and lung diseases. High concentrations of reactive oxygen and nitrogen species (RONS) originated from cigarette smoke or released by numerous cell types such as activated inflammatory cells and other respiratory cells cause oxidative and nitrosative stress contributing to the pathogenesis of COPD. RONS and calpain play important roles in the development of airway and pulmonary vascular remodeling in COPD. Published data show that increased RONS production is associated with increased calpain activation and/or elevated calpain protein level, leading to epithelial or endothelial barrier dysfunction, neovascularization, lung inflammation, increased smooth muscle cell proliferation, and deposition of extracellular matrix protein. Further investigation of the redox-dependent calpain signaling may provide future targets for the prevention and treatment of COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goll, D. E., Thompson, V. F., Li, H., Wei, W., & Cong, J. (2003). The calpain system. Physiological Reviews, 83, 731–801. doi:10.1152/physrev.00029.2002.

    Article  CAS  PubMed  Google Scholar 

  2. Friedrich, P., & Bozoky, Z. (2005). Digestive versus regulatory proteases: On calpain action in vivo. Biological Chemistry, 386, 609–612. doi:10.1515/BC.2005.071.

    Article  CAS  PubMed  Google Scholar 

  3. Sorimachi, H., Hata, S., & Ono, Y. (2011). Impact of genetic insights into calpain biology. Journal of Biochemistry, 150, 23–37. doi:10.1093/jb/mvr070.

    Article  CAS  PubMed  Google Scholar 

  4. Sorimachi, H., Hata, S., & Ono, Y. (2010). Expanding members and roles of the calpain superfamily and their genetically modified animals. Experimental Animals, 59, 549–566.

    Article  CAS  PubMed  Google Scholar 

  5. Croall, D. E., & Ersfeld, K. (2007). The calpains: Modular designs and functional diversity. Genome Biology, 8, 218. doi:10.1186/gb-2007-8-6-218.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Suzuki, K. (1991). Nomenclature of calcium dependent proteinase. Biomedica Biochimica Acta, 50, 483–484.

    CAS  PubMed  Google Scholar 

  7. Sorimachi, H., & Suzuki, K. (2001). The structure of calpain. Journal of Biochemistry, 129, 653–664.

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki, K., Tsuji, S., Kubota, S., Kimura, Y., & Imahori, K. (1981). Limited autolysis of Ca2+-activated neutral protease (CANP) changes its sensitivity to Ca2+ ions. Journal of Biochemistry, 90, 275–278.

    Article  CAS  PubMed  Google Scholar 

  9. Tompa, P., Emori, Y., Sorimachi, H., Suzuki, K., & Friedrich, P. (2001). Domain III of calpain is a ca2+-regulated phospholipid-binding domain. Biochemical and Biophysical Research Communications, 280, 1333–1339. doi:10.1006/bbrc.2001.4279.

    Article  CAS  PubMed  Google Scholar 

  10. Kovacs, L., Han, W., Rafikov, R., Bagi, Z., Offermanns, S., Saido, T. C., Black, S. M., & Su, Y. (2016). Activation of Calpain-2 by mediators in pulmonary vascular remodeling of pulmonary arterial hypertension. American Journal of Respiratory Cell and Molecular Biology, 54, 384–393. doi:10.1165/rcmb.2015-0151OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shiraha, H., Glading, A., Chou, J., Jia, Z., & Wells, A. (2002). Activation of m-calpain (calpain II) by epidermal growth factor is limited by protein kinase a phosphorylation of m-calpain. Molecular and Cellular Biology, 22, 2716–2727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suzuki, K., Imajoh, S., Emori, Y., Kawasaki, H., Minami, Y., & Ohno, S. (1987). Calcium-activated neutral protease and its endogenous inhibitor. Activation at the cell membrane and biological function. FEBS Letters, 220, 271–277.

    Article  CAS  PubMed  Google Scholar 

  13. Pontremoli, S., Melloni, E., Michetti, M., Salamino, F., Sparatore, B., & Horecker, B. L. (1988). An endogenous activator of the Ca2+-dependent proteinase of human neutrophils that increases its affinity for Ca2+. Proceedings of the National Academy of Sciences of the United States of America, 85, 1740–1743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Glading, A., Lauffenburger, D. A., & Wells, A. (2002). Cutting to the chase: Calpain proteases in cell motility. Trends in Cell Biology, 12, 46–54.

    Article  CAS  PubMed  Google Scholar 

  15. Kovacs, L., & Su, Y. (2014). The critical role of Calpain in cell proliferation. Journal of Biomolecular Research Theraphy, 3, 112. doi:10.4172/2167-7956.1000112.

    Google Scholar 

  16. Janossy, J., Ubezio, P., Apati, A., Magocsi, M., Tompa, P., & Friedrich, P. (2004). Calpain as a multi-site regulator of cell cycle. Biochemical Pharmacology, 67, 1513–1521. doi:10.1016/j.bcp.2003.12.021.

    Article  CAS  PubMed  Google Scholar 

  17. Sato, K., & Kawashima, S. (2001). Calpain function in the modulation of signal transduction molecules. Biological Chemistry, 382, 743–751. doi:10.1515/BC.2001.090.

    Article  CAS  PubMed  Google Scholar 

  18. Momeni, H. R. (2011). Role of calpain in apoptosis. Cell Journal, 13, 65–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Branca, D. (2004). Calpain-related diseases. Biochemical and Biophysical Research Communications, 322, 1098–1104. doi:10.1016/j.bbrc.2004.07.126.

    Article  CAS  PubMed  Google Scholar 

  20. Zatz, M., & Starling, A. (2005). Calpains and disease. The New England Journal of Medicine, 352, 2413–2423. doi:10.1056/NEJMra043361.

    Article  CAS  PubMed  Google Scholar 

  21. Bertipaglia, I., & Carafoli, E. (2007). Calpains and human disease. Sub-Cellular Biochemistry, 45, 29–53.

    Article  CAS  PubMed  Google Scholar 

  22. Brieger, K., Schiavone, S., Miller, F. J., Jr., & Krause, K. H. (2012). Reactive oxygen species: From health to disease. Swiss Medical Weekly, 142, w13659. doi:10.4414/smw.2012.13659.

    CAS  PubMed  Google Scholar 

  23. Tabima, D. M., Frizzell, S., & Gladwin, M. T. (2012). Reactive oxygen and nitrogen species in pulmonary hypertension. Free Radical Biology & Medicine, 52, 1970–1986. doi:10.1016/j.freeradbiomed.2012.02.041.

    Article  CAS  Google Scholar 

  24. Rahman, I., Biswas, S. K., & Kode, A. (2006). Oxidant and antioxidant balance in the airways and airway diseases. European Journal of Pharmacology, 533, 222–239. doi:10.1016/j.ejphar.2005.12.087.

    Article  CAS  PubMed  Google Scholar 

  25. Hanta, I., Kocabas, A., Canacankatan, N., Kuleci, S., & Seydaoglu, G. (2006). Oxidant-antioxidant balance in patients with COPD. Lung, 184, 51–55. doi:10.1007/s00408-005-2561-4.

    Article  CAS  PubMed  Google Scholar 

  26. Rahal, A., Kumar, A., Singh, V., Yadav, B., Tiwari, R., Chakraborty, S., & Dhama, K. (2014). Oxidative stress, prooxidants, and antioxidants: The interplay. BioMed Research International, 2014, 761264. doi:10.1155/2014/761264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4, 118–126. doi:10.4103/0973-7847.70902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ridnour, L. A., Thomas, D. D., Mancardi, D., Espey, M. G., Miranda, K. M., Paolocci, N., Feelisch, M., Fukuto, J., & Wink, D. A. (2004). The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biological Chemistry, 385, 1–10. doi:10.1515/BC.2004.001.

    Article  CAS  PubMed  Google Scholar 

  29. Buonocore, G., Perrone, S., & Tataranno, M. L. (2010). Oxygen toxicity: Chemistry and biology of reactive oxygen species. Seminars in Fetal & Neonatal Medicine, 15, 186–190. doi:10.1016/j.siny.2010.04.003.

    Article  Google Scholar 

  30. Aggarwal, S., Gross, C. M., Sharma, S., Fineman, J. R., & Black, S. M. (2013). Reactive oxygen species in pulmonary vascular remodeling. Comprehensive Physiology, 3, 1011–1034. doi:10.1002/cphy.c120024.

    PubMed  PubMed Central  Google Scholar 

  31. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39, 44–84. doi:10.1016/j.biocel.2006.07.001.

    Article  CAS  Google Scholar 

  32. Wedgwood, S., & Steinhorn, R. H. (2014). Role of reactive oxygen species in neonatal pulmonary vascular disease. Antioxidants & Redox Signaling, 21, 1926–1942. doi:10.1089/ars.2013.5785.

    Article  CAS  Google Scholar 

  33. Ha, H. C., Thiagalingam, A., Nelkin, B. D., & Casero, R. A., Jr. (2000). Reactive oxygen species are critical for the growth and differentiation of medullary thyroid carcinoma cells. Clinical Cancer Research, 6, 3783–3787.

    CAS  PubMed  Google Scholar 

  34. Sauer, H., Wartenberg, M., & Hescheler, J. (2001). Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cellular Physiology and Biochemistry, 11, 173–186.

    Article  CAS  PubMed  Google Scholar 

  35. Halliwell, B. (1989). Free radicals, reactive oxygen species and human disease: A critical evaluation with special reference to atherosclerosis. British Journal of Experimental Pathology, 70, 737–757.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. The Biochemical Journal, 417, 1–13. doi:10.1042/BJ20081386.

    Article  CAS  PubMed  Google Scholar 

  37. Stowe, D. F., & Camara, A. K. (2009). Mitochondrial reactive oxygen species production in excitable cells: Modulators of mitochondrial and cell function. Antioxidants & Redox Signaling, 11, 1373–1414. doi:10.1089/ARS.2008.2331.

    Article  CAS  Google Scholar 

  38. Turrens, J. F. (2003). Mitochondrial formation of reactive oxygen species. The Journal of Physiology, 552, 335–344. doi:10.1113/jphysiol.2003.049478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shimoda, L. A., & Undem, C. (2010). Interactions between calcium and reactive oxygen species in pulmonary arterial smooth muscle responses to hypoxia. Respiratory Physiology & Neurobiology, 174, 221–229. doi:10.1016/j.resp.2010.08.014.

    Article  CAS  Google Scholar 

  40. Kowaltowski, A. J., de Souza-Pinto, N. C., Castilho, R. F., & Vercesi, A. E. (2009). Mitochondria and reactive oxygen species. Free Radical Biology & Medicine, 47, 333–343. doi:10.1016/j.freeradbiomed.2009.05.004.

    Article  CAS  Google Scholar 

  41. Figueira, T. R., Barros, M. H., Camargo, A. A., Castilho, R. F., Ferreira, J. C., Kowaltowski, A. J., Sluse, F. E., Souza-Pinto, N. C., & Vercesi, A. E. (2013). Mitochondria as a source of reactive oxygen and nitrogen species: From molecular mechanisms to human health. Antioxidants & Redox Signaling, 18, 2029–2074. doi:10.1089/ars.2012.4729.

    Article  CAS  Google Scholar 

  42. Kirkinezos, I. G., & Moraes, C. T. (2001). Reactive oxygen species and mitochondrial diseases. Seminars in Cell & Developmental Biology, 12, 449–457. doi:10.1006/scdb.2001.0282.

    Article  CAS  Google Scholar 

  43. Gao, L., Laude, K., & Cai, H. (2008). Mitochondrial pathophysiology, reactive oxygen species, and cardiovascular diseases. The Veterinary Clinics of North America. Small Animal Practice, 38(137–55), vi. doi:10.1016/j.cvsm.2007.10.004.

    Google Scholar 

  44. Wiegman, C. H., Michaeloudes, C., Haji, G., Narang, P., Clarke, C. J., Russell, K. E., Bao, W., Pavlidis, S., Barnes, P. J., Kanerva, J., Bittner, A., Rao, N., Murphy, M. P., Kirkham, P. A., Chung, K. F., Adcock, I. M., & Copdmap. (2015). Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. The Journal of Allergy and Clinical Immunology, 136, 769–780. doi:10.1016/j.jaci.2015.01.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ayala, A., Munoz, M. F., & Arguelles, S. (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014, 360438. doi:10.1155/2014/360438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Pamplona, R. (2008). Membrane phospholipids, lipoxidative damage and molecular integrity: A causal role in aging and longevity. Biochimica et Biophysica Acta, 1777, 1249–1262. doi:10.1016/j.bbabio.2008.07.003.

    Article  CAS  PubMed  Google Scholar 

  47. Dalle-Donne, I., Giustarini, D., Colombo, R., Rossi, R., & Milzani, A. (2003). Protein carbonylation in human diseases. Trends in Molecular Medicine, 9, 169–176.

    Article  CAS  PubMed  Google Scholar 

  48. Griendling, K. K., Sorescu, D., & Ushio-Fukai, M. (2000). NAD(P)H oxidase: Role in cardiovascular biology and disease. Circulation Research, 86, 494–501.

    Article  CAS  PubMed  Google Scholar 

  49. Katsuyama, M., Matsuno, K., & Yabe-Nishimura, C. (2012). Physiological roles of NOX/NADPH oxidase, the superoxide-generating enzyme. Journal of Clinical Biochemistry and Nutrition, 50, 9–22. doi:10.3164/jcbn.11-06SR.

    Article  CAS  PubMed  Google Scholar 

  50. Leto, T. L., Morand, S., Hurt, D., & Ueyama, T. (2009). Targeting and regulation of reactive oxygen species generation by Nox Family NADPH oxidases. Antioxidants & Redox Signaling, 11, 2607–2619. doi:10.1089/ARS.2009.2637.

    Article  CAS  Google Scholar 

  51. Banfi, B., Molnar, G., Maturana, A., Steger, K., Hegedus, B., Demaurex, N., & Krause, K. H. (2001). A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. The Journal of Biological Chemistry, 276, 37594–37601. doi:10.1074/jbc.M103034200.

    Article  CAS  PubMed  Google Scholar 

  52. Lassegue, B., & Clempus, R. E. (2003). Vascular NAD(P)H oxidases: Specific features, expression, and regulation. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 285, R277–R297. doi:10.1152/ajpregu.00758.2002.

    Article  CAS  PubMed  Google Scholar 

  53. Krause, K. H. (2004). Tissue distribution and putative physiological function of NOX Family NADPH oxidases. Japanese Journal of Infectious Diseases, 57, S28–S29.

    PubMed  Google Scholar 

  54. Lassegue, B., & Griendling, K. K. (2010). NADPH oxidases: Functions and pathologies in the vasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 653–661. doi:10.1161/ATVBAHA.108.181610.

    Article  CAS  PubMed  Google Scholar 

  55. Griffith, B., Pendyala, S., Hecker, L., Lee, P. J., Natarajan, V., & Thannickal, V. J. (2009). NOX enzymes and pulmonary disease. Antioxidants & Redox Signaling, 11, 2505–2516. doi:10.1089/ARS.2009.2599.

    Article  CAS  Google Scholar 

  56. DeLeo, F. R., & Quinn, M. T. (1996). Assembly of the phagocyte NADPH oxidase: Molecular interaction of oxidase proteins. Journal of Leukocyte Biology, 60, 677–691.

    PubMed  Google Scholar 

  57. Nauseef, W. M. (2004). Assembly of the phagocyte NADPH oxidase. Histochemistry and Cell Biology, 122, 277–291. doi:10.1007/s00418-004-0679-8.

    Article  CAS  PubMed  Google Scholar 

  58. Quinn, M. T., & Gauss, K. A. (2004). Structure and regulation of the neutrophil respiratory burst oxidase: Comparison with nonphagocyte oxidases. Journal of Leukocyte Biology, 76, 760–781. doi:10.1189/jlb.0404216.

    Article  CAS  PubMed  Google Scholar 

  59. Geiszt, M., Lekstrom, K., Witta, J., & Leto, T. L. (2003). Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. The Journal of Biological Chemistry, 278, 20006–20012. doi:10.1074/jbc.M301289200.

    Article  CAS  PubMed  Google Scholar 

  60. Takeya, R., Ueno, N., Kami, K., Taura, M., Kohjima, M., Izaki, T., Nunoi, H., & Sumimoto, H. (2003). Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. The Journal of Biological Chemistry, 278, 25234–25246. doi:10.1074/jbc.M212856200.

    Article  CAS  PubMed  Google Scholar 

  61. Martyn, K. D., Frederick, L. M., von Loehneysen, K., Dinauer, M. C., & Knaus, U. G. (2006). Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cellular Signalling, 18, 69–82. doi:10.1016/j.cellsig.2005.03.023.

    Article  CAS  PubMed  Google Scholar 

  62. Serrander, L., Cartier, L., Bedard, K., Banfi, B., Lardy, B., Plastre, O., Sienkiewicz, A., Forro, L., Schlegel, W., & Krause, K. H. (2007). NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. The Biochemical Journal, 406, 105–114. doi:10.1042/BJ20061903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dikalov, S. I., Dikalova, A. E., Bikineyeva, A. T., Schmidt, H. H., Harrison, D. G., & Griendling, K. K. (2008). Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radical Biology & Medicine, 45, 1340–1351. doi:10.1016/j.freeradbiomed.2008.08.013.

    Article  CAS  Google Scholar 

  64. Fulton, D. J. (2009). Nox5 and the regulation of cellular function. Antioxidants & Redox Signaling, 11, 2443–2452. doi:10.1089/ARS.2009.2587.

    Article  CAS  Google Scholar 

  65. Chen, F., Wang, Y., Barman, S., & Fulton, D. J. (2015). Enzymatic regulation and functional relevance of NOX5. Current Pharmaceutical Design, 21, 5999–6008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jagnandan, D., Church, J. E., Banfi, B., Stuehr, D. J., Marrero, M. B., & Fulton, D. J. (2007). Novel mechanism of activation of NADPH oxidase 5. Calcium sensitization via phosphorylation. The Journal of Biological Chemistry, 282, 6494–6507. doi:10.1074/jbc.M608966200.

    Article  CAS  PubMed  Google Scholar 

  67. Donko, A., Peterfi, Z., Sum, A., Leto, T., & Geiszt, M. (2005). Dual oxidases. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360, 2301–2308. doi:10.1098/rstb.2005.1767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sugawara, M., Sugawara, Y., Wen, K., & Giulivi, C. (2002). Generation of oxygen free radicals in thyroid cells and inhibition of thyroid peroxidase. Experimental Biology and Medicine (Maywood, N.J.), 227, 141–146.

    Article  CAS  Google Scholar 

  69. Sumimoto, H. (2008). Structure, regulation and evolution of Nox-Family NADPH oxidases that produce reactive oxygen species. The FEBS Journal, 275, 3249–3277. doi:10.1111/j.1742-4658.2008.06488.x.

    Article  CAS  PubMed  Google Scholar 

  70. Brandes, R. P., Weissmann, N., & Schroder, K. (2010). NADPH oxidases in cardiovascular disease. Free Radical Biology & Medicine, 49, 687–706. doi:10.1016/j.freeradbiomed.2010.04.030.

    Article  CAS  Google Scholar 

  71. Harrison, R. (2002). Structure and function of xanthine oxidoreductase: Where are we now? Free Radical Biology & Medicine, 33, 774–797.

    Article  CAS  Google Scholar 

  72. Hille, R., & Nishino, T. (1995). Flavoprotein structure and mechanism. 4. Xanthine oxidase and xanthine dehydrogenase. The FASEB Journal, 9, 995–1003.

    CAS  PubMed  Google Scholar 

  73. Engerson, T. D., McKelvey, T. G., Rhyne, D. B., Boggio, E. B., Snyder, S. J., & Jones, H. P. (1987). Conversion of xanthine dehydrogenase to oxidase in ischemic rat tissues. The Journal of Clinical Investigation, 79, 1564–1570. doi:10.1172/JCI112990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Granger, D. N. (1988). Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. The American Journal of Physiology, 255, H1269–H1275.

    CAS  PubMed  Google Scholar 

  75. Kuwabara, Y., Nishino, T., Okamoto, K., Matsumura, T., Eger, B. T., Pai, E. F., & Nishino, T. (2003). Unique amino acids cluster for switching from the dehydrogenase to oxidase form of xanthine oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America, 100, 8170–8175. doi:10.1073/pnas.1431485100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Berry, C. E., & Hare, J. M. (2004). Xanthine oxidoreductase and cardiovascular disease: Molecular mechanisms and pathophysiological implications. The Journal of Physiology, 555, 589–606. doi:10.1113/jphysiol.2003.055913.

    Article  CAS  PubMed  Google Scholar 

  77. Doel, J. J., Godber, B. L., Eisenthal, R., & Harrison, R. (2001). Reduction of organic nitrates catalysed by xanthine oxidoreductase under anaerobic conditions. Biochimica et Biophysica Acta, 1527, 81–87.

    Article  CAS  PubMed  Google Scholar 

  78. Godber, B. L., Doel, J. J., Sapkota, G. P., Blake, D. R., Stevens, C. R., Eisenthal, R., & Harrison, R. (2000). Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase. The Journal of Biological Chemistry, 275, 7757–7763.

    Article  CAS  PubMed  Google Scholar 

  79. Cantu-Medellin, N., & Kelley, E. E. (2013). Xanthine oxidoreductase-catalyzed reactive species generation: A process in critical need of reevaluation. Redox Biology, 1, 353–358. doi:10.1016/j.redox.2013.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, Z., Naughton, D., Winyard, P. G., Benjamin, N., Blake, D. R., & Symons, M. C. (1998). Generation of nitric oxide by a nitrite reductase activity of xanthine oxidase: A potential pathway for nitric oxide formation in the absence of nitric oxide synthase activity. Biochemical and Biophysical Research Communications, 249, 767–772. doi:10.1006/bbrc.1998.9226.

    Article  CAS  PubMed  Google Scholar 

  81. Maia, L. B., Pereira, V., Mira, L., & Moura, J. J. (2015). Nitrite reductase activity of rat and human xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: Evaluation of their contribution to NO formation in vivo. Biochemistry, 54, 685–710. doi:10.1021/bi500987w.

    Article  CAS  PubMed  Google Scholar 

  82. Trujillo, M., Alvarez, M. N., Peluffo, G., Freeman, B. A., & Radi, R. (1998). Xanthine oxidase-mediated decomposition of S-nitrosothiols. The Journal of Biological Chemistry, 273, 7828–7834.

    Article  CAS  PubMed  Google Scholar 

  83. Godber, B. L., Doel, J. J., Durgan, J., Eisenthal, R., & Harrison, R. (2000). A new route to peroxynitrite: A role for xanthine oxidoreductase. FEBS Letters, 475, 93–96.

    Article  CAS  PubMed  Google Scholar 

  84. Granger, D. N. (1999). Ischemia-reperfusion: Mechanisms of microvascular dysfunction and the influence of risk factors for cardiovascular disease. Microcirculation, 6, 167–178.

    Article  CAS  PubMed  Google Scholar 

  85. Farquharson, C. A., Butler, R., Hill, A., Belch, J. J., & Struthers, A. D. (2002). Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation, 106, 221–226.

    Article  CAS  PubMed  Google Scholar 

  86. Feoli, A. M., Macagnan, F. E., Piovesan, C. H., Bodanese, L. C., & Siqueira, I. R. (2014). Xanthine oxidase activity is associated with risk factors for cardiovascular disease and inflammatory and oxidative status markers in metabolic syndrome: Effects of a single exercise session. Oxidative Medicine and Cellular Longevity, 2014, 587083. doi:10.1155/2014/587083.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Spiekermann, S., Schenk, K., & Hoeper, M. M. (2009). Increased xanthine oxidase activity in idiopathic pulmonary arterial hypertension. The European Respiratory Journal, 34, 276. doi:10.1183/09031936.00013309.

    Article  CAS  PubMed  Google Scholar 

  88. Komaki, Y., Sugiura, H., Koarai, A., Tomaki, M., Ogawa, H., Akita, T., Hattori, T., & Ichinose, M. (2005). Cytokine-mediated xanthine oxidase upregulation in chronic obstructive pulmonary disease's airways. Pulmonary Pharmacology & Therapeutics, 18, 297–302. doi:10.1016/j.pupt.2005.01.002.

    Article  CAS  Google Scholar 

  89. Heunks, L. M., Vina, J., van Herwaarden, C. L., Folgering, H. T., Gimeno, A., & Dekhuijzen, P. N. (1999). Xanthine oxidase is involved in exercise-induced oxidative stress in chronic obstructive pulmonary disease. The American Journal of Physiology, 277, R1697–R1704.

    CAS  PubMed  Google Scholar 

  90. Boueiz, A., Damarla, M., & Hassoun, P. M. (2008). Xanthine oxidoreductase in respiratory and cardiovascular disorders. American Journal of Physiology. Lung Cellular and Molecular Physiology, 294, L830–L840. doi:10.1152/ajplung.00007.2008.

    Article  CAS  PubMed  Google Scholar 

  91. Ichinose, M., Sugiura, H., Yamagata, S., Koarai, A., Tomaki, M., Ogawa, H., Komaki, Y., Barnes, P. J., Shirato, K., & Hattori, T. (2003). Xanthine oxidase inhibition reduces reactive nitrogen species production in COPD airways. The European Respiratory Journal, 22, 457–461.

    Article  CAS  PubMed  Google Scholar 

  92. Stuehr, D. J. (1997). Structure-function aspects in the nitric oxide synthases. Annual Review of Pharmacology and Toxicology, 37, 339–359. doi:10.1146/annurev.pharmtox.37.1.339.

    Article  CAS  PubMed  Google Scholar 

  93. Andrew, P. J., & Mayer, B. (1999). Enzymatic function of nitric oxide synthases. Cardiovascular Research, 43, 521–531.

    Article  CAS  PubMed  Google Scholar 

  94. Rabelink, A. J. (1998). Nobel prize in medicine and physiology 1998 for the discovery of the role of nitric oxide as a signalling molecule. Nederlands Tijdschrift voor Geneeskunde, 142, 2828–2830.

    CAS  PubMed  Google Scholar 

  95. Beckman, J. S., & Koppenol, W. H. (1996). Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. The American Journal of Physiology, 271, C1424–C1437.

    CAS  PubMed  Google Scholar 

  96. O'Donnell, V. B., Eiserich, J. P., Chumley, P. H., Jablonsky, M. J., Krishna, N. R., Kirk, M., Barnes, S., Darley-Usmar, V. M., & Freeman, B. A. (1999). Nitration of unsaturated fatty acids by nitric oxide-derived reactive nitrogen species peroxynitrite, nitrous acid, nitrogen dioxide, and nitronium ion. Chemical Research in Toxicology, 12, 83–92. doi:10.1021/tx980207u.

    Article  PubMed  Google Scholar 

  97. Merenyi, G., & Lind, J. (1998). Free radical formation in the peroxynitrous acid (ONOOH)/peroxynitrite (ONOO-) system. Chemical Research in Toxicology, 11, 243–246. doi:10.1021/tx980026s.

    Article  CAS  PubMed  Google Scholar 

  98. van der Vliet, A., Eiserich, J. P., Kaur, H., Cross, C. E., & Halliwell, B. (1996). Nitrotyrosine as biomarker for reactive nitrogen species. Methods in Enzymology, 269, 175–184.

    Article  PubMed  Google Scholar 

  99. van der Vliet, A., Eiserich, J. P., Halliwell, B., & Cross, C. E. (1997). Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. Journal of Biological Chemistry, 272, 7617–7625.

    Article  PubMed  Google Scholar 

  100. Pacher, P., Beckman, J. S., & Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiological Reviews, 87, 315–424. doi:10.1152/physrev.00029.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Szabo, C., Ischiropoulos, H., & Radi, R. (2007). Peroxynitrite: Biochemistry, pathophysiology and development of therapeutics. Nature Reviews. Drug Discovery, 6, 662–680. doi:10.1038/nrd2222.

    Article  CAS  PubMed  Google Scholar 

  102. Ricciardolo, F. L., Nijkamp, F. P., & Folkerts, G. (2006). Nitric oxide synthase (NOS) as therapeutic target for asthma and chronic obstructive pulmonary disease. Current Drug Targets, 7, 721–735.

    Article  CAS  PubMed  Google Scholar 

  103. Ichinose, M., Sugiura, H., Yamagata, S., Koarai, A., & Shirato, K. (2000). Increase in reactive nitrogen species production in chronic obstructive pulmonary disease airways. American Journal of Respiratory and Critical Care Medicine, 162, 701–706. doi:10.1164/ajrccm.162.2.9908132.

    Article  CAS  PubMed  Google Scholar 

  104. Moncada, S., Palmer, R. M., & Higgs, E. A. (1991). Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacological Reviews, 43, 109–142.

    CAS  PubMed  Google Scholar 

  105. Stuehr, D. J. (1999). Mammalian nitric oxide synthases. Biochimica et Biophysica Acta, 1411, 217–230.

    Article  CAS  PubMed  Google Scholar 

  106. Folkerts, G., Kloek, J., Muijsers, R. B., & Nijkamp, F. P. (2001). Reactive nitrogen and oxygen species in airway inflammation. European Journal of Pharmacology, 429, 251–262.

    Article  CAS  PubMed  Google Scholar 

  107. Alderton, W. K., Cooper, C. E., & Knowles, R. G. (2001). Nitric oxide synthases: Structure, function and inhibition. The Biochemical Journal, 357, 593–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fischmann TO, Hruza, A., Niu, X. D., Fossetta, J. D., Lunn, C. A., Dolphin, E., Prongay, A. J., Reichert, P., Lundell, D. J., Narula, S. K., & Weber, P. C. (1999). Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nature Structural Biology, 6, 233–242. doi:10.1038/6675.

    Article  PubMed  CAS  Google Scholar 

  109. Cho, H. J., Xie, Q. W., Calaycay, J., Mumford, R. A., Swiderek, K. M., Lee, T. D., & Nathan, C. (1992). Calmodulin is a subunit of nitric oxide synthase from macrophages. The Journal of Experimental Medicine, 176, 599–604.

    Article  CAS  PubMed  Google Scholar 

  110. Murad, F. (1999). Cellular signaling with nitric oxide and cyclic GMP. Brazilian Journal of Medical and Biological Research, 32, 1317–1327.

    Article  CAS  PubMed  Google Scholar 

  111. Drew, B., & Leeuwenburgh, C. (2002). Aging and the role of reactive nitrogen species. Annals of the New York Academy of Sciences, 959, 66–81.

    Article  CAS  PubMed  Google Scholar 

  112. Forstermann, U., & Sessa, W. C. (2012). Nitric oxide synthases: Regulation and function. European Heart Journal, 33(829–37), 837a–837d. doi:10.1093/eurheartj/ehr304.

    Google Scholar 

  113. Mayer, B., Wu, C., Gorren, A. C., Pfeiffer, S., Schmidt, K., Clark, P., Stuehr, D. J., & Werner, E. R. (1997). Tetrahydrobiopterin binding to macrophage inducible nitric oxide synthase: Heme spin shift and dimer stabilization by the potent pterin antagonist 4-amino-tetrahydrobiopterin. Biochemistry, 36, 8422–8427. doi:10.1021/bi970144z.

    Article  CAS  PubMed  Google Scholar 

  114. Forstermann, U. (2006). Janus-faced role of endothelial NO synthase in vascular disease: Uncoupling of oxygen reduction from NO synthesis and its pharmacological reversal. Biological Chemistry, 387, 1521–1533. doi:10.1515/BC.2006.190.

    Article  PubMed  CAS  Google Scholar 

  115. Abe, J., & Berk, B. C. (1998). Reactive oxygen species as mediators of signal transduction in cardiovascular disease. Trends in Cardiovascular Medicine, 8, 59–64. doi:10.1016/S1050-1738(97)00133-3.

    Article  CAS  PubMed  Google Scholar 

  116. Halliwell, B., & Gutteridge, J. M. (1995). The definition and measurement of antioxidants in biological systems. Free Radical Biology & Medicine, 18, 125–126.

    Article  CAS  Google Scholar 

  117. Sies, H. (1997). Oxidative stress: Oxidants and antioxidants. Experimental Physiology, 82, 291–295.

    Article  CAS  PubMed  Google Scholar 

  118. Halliwell, B., & Gutteridge, J. M. (1986). Oxygen free radicals and iron in relation to biology and medicine: Some problems and concepts. Archives of Biochemistry and Biophysics, 246, 501–514.

    Article  CAS  PubMed  Google Scholar 

  119. Halliwell, B. (1999). Antioxidant defence mechanisms: From the beginning to the end (of the beginning). Free Radical Research, 31, 261–272.

    Article  CAS  PubMed  Google Scholar 

  120. Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5, 9–19. doi:10.1097/WOX.0b013e3182439613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Young, I. S., & Woodside, J. V. (2001). Antioxidants in health and disease. Journal of Clinical Pathology, 54, 176–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rahman, I., Yang, S. R., & Biswas, S. K. (2006). Current concepts of redox signaling in the lungs. Antioxidants & Redox Signaling, 8, 681–689. doi:10.1089/ars.2006.8.681.

    Article  CAS  Google Scholar 

  123. Kochanek, K. D., Murphy, S. L., Xu, J., & Tejada-Vera, B. (2016). Deaths: Final data for 2014. National Vital Statistics Reports, 65, 1–122.

    PubMed  Google Scholar 

  124. Pauwels, R. A., Buist, A. S., Ma, P., Jenkins, C. R., Hurd, S. S., & Committee, G. S. (2001). Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: National Heart, Lung, and Blood Institute and World Health Organization global initiative for chronic obstructive lung disease (GOLD): Executive summary. Respiratory Care, 46, 798–825.

    CAS  PubMed  Google Scholar 

  125. Celli, B. R., MacNee, W., & Force, A. E. T. (2004). Standards for the diagnosis and treatment of patients with COPD: A summary of the ATS/ERS position paper. The European Respiratory Journal, 23, 932–946.

    Article  CAS  PubMed  Google Scholar 

  126. Welte, T., & Groneberg, D. A. (2006). Asthma and COPD. Experimental and Toxicologic Pathology, 57(Suppl 2), 35–40. doi:10.1016/j.etp.2006.02.004.

    Article  PubMed  Google Scholar 

  127. Yoshida, T., & Tuder, R. M. (2007). Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiological Reviews, 87, 1047–1082. doi:10.1152/physrev.00048.2006.

    Article  CAS  PubMed  Google Scholar 

  128. Tuder, R. M., & Petrache, I. (2012). Pathogenesis of chronic obstructive pulmonary disease. The Journal of Clinical Investigation, 122, 2749–2755. doi:10.1172/JCI60324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Church, D. F., & Pryor, W. A. (1985). Free-radical chemistry of cigarette smoke and its toxicological implications. Environmental Health Perspectives, 64, 111–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rahman, I., & MacNee, W. (1996). Role of oxidants/antioxidants in smoking-induced lung diseases. Free Radical Biology & Medicine, 21, 669–681.

    Article  CAS  Google Scholar 

  131. Anderson, D., & Macnee, W. (2009). Targeted treatment in COPD: A multi-system approach for a multi-system disease. International Journal of Chronic Obstructive Pulmonary Disease, 4, 321–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hooper, R., Burney, P., Vollmer, W. M., McBurnie, M. A., Gislason, T., Tan, W. C., Jithoo, A., Kocabas, A., Welte, T., & Buist, A. S. (2012). Risk factors for COPD spirometrically defined from the lower limit of normal in the BOLD project. The European Respiratory Journal, 39, 1343–1353. doi:10.1183/09031936.00002711.

    Article  PubMed  Google Scholar 

  133. Jones, R. L., Noble, P. B., Elliot, J. G., & James, A. L. (2016). Airway remodelling in COPD: It's not asthma! Respirology, 21(8), 1347–1356. doi:10.1111/resp.12841.

    Article  PubMed  Google Scholar 

  134. James, A. L., & Wenzel, S. (2007). Clinical relevance of airway remodelling in airway diseases. The European Respiratory Journal, 30, 134–155. doi:10.1183/09031936.00146905.

    Article  CAS  PubMed  Google Scholar 

  135. Jeffery, P. K. (2001). Remodeling in asthma and chronic obstructive lung disease. American Journal of Respiratory and Critical Care Medicine, 164, S28–S38. doi:10.1164/ajrccm.164.supplement_2.2106061.

    Article  CAS  PubMed  Google Scholar 

  136. Parameswaran, K., Willems-Widyastuti, A., Alagappan, V. K., Radford, K., Kranenburg, A. R., & Sharma, H. S. (2006). Role of extracellular matrix and its regulators in human airway smooth muscle biology. Cell Biochemistry and Biophysics, 44, 139–146. doi:10.1385/CBB:44:1:139.

    Article  CAS  PubMed  Google Scholar 

  137. Gosens, R., Roscioni, S. S., Dekkers, B. G., Pera, T., Schmidt, M., Schaafsma, D., Zaagsma, J., & Meurs, H. (2008). Pharmacology of airway smooth muscle proliferation. European Journal of Pharmacology, 585, 385–397. doi:10.1016/j.ejphar.2008.01.055.

    Article  CAS  PubMed  Google Scholar 

  138. Hogg, J. C., Chu, F., Utokaparch, S., Woods, R., Elliott, W. M., Buzatu, L., Cherniack, R. M., Rogers, R. M., Sciurba, F. C., Coxson, H. O., & Pare, P. D. (2004). The nature of small-airway obstruction in chronic obstructive pulmonary disease. The New England Journal of Medicine, 350, 2645–2653. doi:10.1056/NEJMoa032158.

    Article  CAS  PubMed  Google Scholar 

  139. Saetta, M., Turato, G., Baraldo, S., Zanin, A., Braccioni, F., Mapp, C. E., Maestrelli, P., Cavallesco, G., Papi, A., & Fabbri, L. M. (2000). Goblet cell hyperplasia and epithelial inflammation in peripheral airways of smokers with both symptoms of chronic bronchitis and chronic airflow limitation. American Journal of Respiratory and Critical Care Medicine, 161, 1016–1021. doi:10.1164/ajrccm.161.3.9907080.

    Article  CAS  PubMed  Google Scholar 

  140. Davidson, W., & Bai, T. R. (2005). Lung structural changes in chronic obstructive pulmonary diseases. Current Drug Targets. Inflammation and Allergy, 4, 643–649.

    Article  CAS  PubMed  Google Scholar 

  141. Jeffery, P. K. (2004). Remodeling and inflammation of bronchi in asthma and chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society, 1, 176–183. doi:10.1513/pats.200402-009MS.

    Article  CAS  PubMed  Google Scholar 

  142. Pini, L., Pinelli, V., Modina, D., Bezzi, M., Tiberio, L., & Tantucci, C. (2014). Central airways remodeling in COPD patients. International Journal of Chronic Obstructive Pulmonary Disease, 9, 927–932. doi:10.2147/COPD.S52478.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kranenburg, A. R., Willems-Widyastuti, A., Moori, W. J., Sterk, P. J., Alagappan, V. K., de Boer, W. I., & Sharma, H. S. (2006). Enhanced bronchial expression of extracellular matrix proteins in chronic obstructive pulmonary disease. American Journal of Clinical Pathology, 126, 725–735.

    Article  CAS  PubMed  Google Scholar 

  144. Liesker, J. J., Ten Hacken, N. H., Zeinstra-Smith, M., Rutgers, S. R., Postma, D. S., & Timens, W. (2009). Reticular basement membrane in asthma and COPD: Similar thickness, yet different composition. International Journal of Chronic Obstructive Pulmonary Disease, 4, 127–135.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Chanez, P., Vignola, A. M., O'Shaugnessy, T., Enander, I., Li, D., Jeffery, P. K., & Bousquet, J. (1997). Corticosteroid reversibility in COPD is related to features of asthma. American Journal of Respiratory and Critical Care Medicine, 155, 1529–1534. doi:10.1164/ajrccm.155.5.9154853.

    Article  CAS  PubMed  Google Scholar 

  146. Magee, F., Wright, J. L., Wiggs, B. R., Pare, P. D., & Hogg, J. C. (1988). Pulmonary vascular structure and function in chronic obstructive pulmonary disease. Thorax, 43, 183–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kranenburg, A. R., De Boer, W. I., Van Krieken, J. H., Mooi, W. J., Walters, J. E., Saxena, P. R., Sterk, P. J., & Sharma, H. S. (2002). Enhanced expression of fibroblast growth factors and receptor FGFR-1 during vascular remodeling in chronic obstructive pulmonary disease. American Journal of Respiratory Cell and Molecular Biology, 27, 517–525. doi:10.1165/rcmb.4474.

    Article  CAS  PubMed  Google Scholar 

  148. Santos, S., Peinado, V. I., Ramirez, J., Melgosa, T., Roca, J., Rodriguez-Roisin, R., & Barbera, J. A. (2002). Characterization of pulmonary vascular remodelling in smokers and patients with mild COPD. The European Respiratory Journal, 19, 632–638.

    Article  CAS  PubMed  Google Scholar 

  149. Peinado, V. I., Pizarro, S., & Barbera, J. A. (2008). Pulmonary vascular involvement in COPD. Chest, 134, 808–814. doi:10.1378/chest.08-0820.

    Article  CAS  PubMed  Google Scholar 

  150. Peinado, V. I., Barbera, J. A., Ramirez, J., Gomez, F. P., Roca, J., Jover, L., Gimferrer, J. M., & Rodriguez-Roisin, R. (1998). Endothelial dysfunction in pulmonary arteries of patients with mild COPD. The American Journal of Physiology, 274, L908–L913.

    CAS  PubMed  Google Scholar 

  151. Peinado, V. I., Barbera, J. A., Abate, P., Ramirez, J., Roca, J., Santos, S., & Rodriguez-Roisin, R. (1999). Inflammatory reaction in pulmonary muscular arteries of patients with mild chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 159, 1605–1611. doi:10.1164/ajrccm.159.5.9807059.

    Article  CAS  PubMed  Google Scholar 

  152. Siafakas, N. M., Antoniou, K. M., & Tzortzaki, E. G. (2007). Role of angiogenesis and vascular remodeling in chronic obstructive pulmonary disease. International Journal of Chronic Obstructive Pulmonary Disease, 2, 453–462.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Harkness, L. M., Kanabar, V., Sharma, H. S., Westergren-Thorsson, G., & Larsson-Callerfelt, A. K. (2014). Pulmonary vascular changes in asthma and COPD. Pulmonary Pharmacology & Therapeutics, 29, 144–155. doi:10.1016/j.pupt.2014.09.003.

    Article  CAS  Google Scholar 

  154. Matarese, A., & Santulli, G. (2012). Angiogenesis in chronic obstructive pulmonary disease: A translational appraisal. Translational Medicine of UniSa, 3, 49–56.

    Google Scholar 

  155. Kranenburg, A. R., de Boer, W. I., Alagappan, V. K., Sterk, P. J., & Sharma, H. S. (2005). Enhanced bronchial expression of vascular endothelial growth factor and receptors (Flk-1 and Flt-1) in patients with chronic obstructive pulmonary disease. Thorax, 60, 106–113. doi:10.1136/thx.2004.023986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Santos, S., Peinado, V. I., Ramirez, J., Morales-Blanhir, J., Bastos, R., Roca, J., Rodriguez-Roisin, R., & Barbera, J. A. (2003). Enhanced expression of vascular endothelial growth factor in pulmonary arteries of smokers and patients with moderate chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 167, 1250–1256. doi:10.1164/rccm.200210-1233OC.

    Article  PubMed  Google Scholar 

  157. Kasahara, Y., Tuder, R. M., Taraseviciene-Stewart, L., Le Cras, T. D., Abman, S., Hirth, P. K., Waltenberger, J., & Voelkel, N. F. (2000). Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. The Journal of Clinical Investigation, 106, 1311–1319. doi:10.1172/JCI10259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kasahara, Y., Tuder, R. M., Cool, C. D., Lynch, D. A., Flores, S. C., & Voelkel, N. F. (2001). Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. American Journal of Respiratory and Critical Care Medicine, 163, 737–744. doi:10.1164/ajrccm.163.3.2002117.

    Article  CAS  PubMed  Google Scholar 

  159. Kanazawa, H., Asai, K., Hirata, K., & Yoshikawa, J. (2003). Possible effects of vascular endothelial growth factor in the pathogenesis of chronic obstructive pulmonary disease. The American Journal of Medicine, 114, 354–358.

    Article  CAS  PubMed  Google Scholar 

  160. Voelkel, N. F., Vandivier, R. W., & Tuder, R. M. (2006). Vascular endothelial growth factor in the lung. American Journal of Physiology. Lung Cellular and Molecular Physiology, 290, L209–L221. doi:10.1152/ajplung.00185.2005.

    Article  CAS  PubMed  Google Scholar 

  161. Domej, W., Oettl, K., & Renner, W. (2014). Oxidative stress and free radicals in COPD--implications and relevance for treatment. International Journal of Chronic Obstructive Pulmonary Disease, 9, 1207–1224. doi:10.2147/COPD.S51226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Fischer, B. M., Voynow, J. A., & Ghio, A. J. (2015). COPD: Balancing oxidants and antioxidants. International Journal of Chronic Obstructive Pulmonary Disease, 10(1), 261–276. doi:10.2147/Copd.S42414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mannam, P., Srivastava, A., Sugunaraj, J. P., Lee, P. J., & Sauler, M. (2014). Oxidants in acute and chronic lung disease. Journal of Blood Lymph, 4, pii. doi:10.4172/2165-7831.1000128.

    Article  Google Scholar 

  164. Jiang, W. T., Liu, X. S., Xu, Y. J., Ni, W., & Chen, S. X. (2015). Expression of nitric oxide synthase Isoenzyme in lung tissue of smokers with and without chronic obstructive pulmonary disease. Chinese Medical Journal, 128, 1584–1589. doi:10.4103/0366-6999.158309.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Rahman, I., & Adcock, I. M. (2006). Oxidative stress and redox regulation of lung inflammation in COPD. The European Respiratory Journal, 28, 219–242. doi:10.1183/09031936.06.00053805.

    Article  CAS  PubMed  Google Scholar 

  166. Heijink, I. H., Brandenburg, S. M., Postma, D. S., & van Oosterhout, A. J. (2012). Cigarette smoke impairs airway epithelial barrier function and cell-cell contact recovery. The European Respiratory Journal, 39, 419–428. doi:10.1183/09031936.00193810.

    Article  CAS  PubMed  Google Scholar 

  167. Zhang, R., Zhao, H., Dong, H., Zou, F., & Cai, S. (2015). 1alpha,25-dihydroxyvitamin D(3) counteracts the effects of cigarette smoke in airway epithelial cells. Cellular Immunology, 295, 137–143. doi:10.1016/j.cellimm.2015.03.004.

    Article  CAS  PubMed  Google Scholar 

  168. Wang, T., Wang, L., Moreno-Vinasco, L., Lang, G. D., Siegler, J. H., Mathew, B., Usatyuk, P. V., Samet, J. M., Geyh, A. S., Breysse, P. N., Natarajan, V., & Garcia, J. G. (2012). Particulate matter air pollution disrupts endothelial cell barrier via calpain-mediated tight junction protein degradation. Particle and Fibre Toxicology, 9, 35. doi:10.1186/1743-8977-9-35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Chun, J., & Prince, A. (2009). TLR2-induced calpain cleavage of epithelial junctional proteins facilitates leukocyte transmigration. Cell Host & Microbe, 5, 47–58. doi:10.1016/j.chom.2008.11.009.

    Article  CAS  Google Scholar 

  170. Liu, D., Yan, Z., Minshall, R. D., Schwartz, D. E., Chen, Y., & Hu, G. (2012). Activation of calpains mediates early lung neutrophilic inflammation in ventilator-induced lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology, 302, L370–L379. doi:10.1152/ajplung.00349.2011.

    Article  CAS  PubMed  Google Scholar 

  171. Lampe, W. R., Park, J., Fang, S., Crews, A. L., & Adler, K. B. (2012). Calpain and MARCKS protein regulation of airway mucin secretion. Pulmonary Pharmacology & Therapeutics, 25, 427–431. doi:10.1016/j.pupt.2012.06.003.

    Article  CAS  Google Scholar 

  172. Su, Y., Cao, W., Han, Z., & Block, E. R. (2004). Cigarette smoke extract inhibits angiogenesis of pulmonary artery endothelial cells: The role of calpain. American Journal of Physiology. Lung Cellular and Molecular Physiology, 287, L794–L800. doi:10.1152/ajplung.00079.2004.

    Article  CAS  PubMed  Google Scholar 

  173. Edirisinghe, I., Yang, S. R., Yao, H., Rajendrasozhan, S., Caito, S., Adenuga, D., Wong, C., Rahman, A., Phipps, R. P., Jin, Z. G., & Rahman, I. (2008). VEGFR-2 inhibition augments cigarette smoke-induced oxidative stress and inflammatory responses leading to endothelial dysfunction. The FASEB Journal, 22, 2297–2310. doi:10.1096/fj.07-099481.

    Article  CAS  PubMed  Google Scholar 

  174. Su, Y., Cui, Z., Li, Z., & Block, E. R. (2006). Calpain-2 regulation of VEGF-mediated angiogenesis. The FASEB Journal, 20, 1443–1451. doi:10.1096/fj.05-5354com.

    Article  CAS  PubMed  Google Scholar 

  175. Su, Y., Han, W., Giraldo, C., De Li, Y., & Block, E. R. (1998). Effect of cigarette smoke extract on nitric oxide synthase in pulmonary artery endothelial cells. American Journal of Respiratory Cell and Molecular Biology, 19, 819–825. doi:10.1165/ajrcmb.19.5.3091.

    Article  CAS  PubMed  Google Scholar 

  176. Su, Y., & Block, E. R. (2000). Role of calpain in hypoxic inhibition of nitric oxide synthase activity in pulmonary endothelial cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 278, L1204–L1212.

    CAS  PubMed  Google Scholar 

  177. Cui, Z., Han, Z., Li, Z., Hu, H., Patel, J. M., Antony, V., Block, E. R., & Su, Y. (2005). Involvement of calpain-calpastatin in cigarette smoke-induced inhibition of lung endothelial nitric oxide synthase. American Journal of Respiratory Cell and Molecular Biology, 33, 513–520. doi:10.1165/rcmb.2005-0046OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Su, Y., Zhang, J., Patel, J. M., Antony, V., & Block, E. R. (2006). Concentration-dependent effects of nitric oxide on angiogenesis of lung microvascular endothelial cells: Role of Calpain Nitrosylation. Proceedings of the American Thoracic Society, 3, 548. doi:10.1513/pats.200603-077MS.

    Article  Google Scholar 

  179. Bein, K., & Leikauf, G. D. (2011). Acrolein - a pulmonary hazard. Molecular Nutrition & Food Research, 55, 1342–1360. doi:10.1002/mnfr.201100279.

    Article  CAS  Google Scholar 

  180. Roy, J., Pallepati, P., Bettaieb, A., Tanel, A., & Averill-Bates, D. A. (2009). Acrolein induces a cellular stress response and triggers mitochondrial apoptosis in A549 cells. Chemico-Biological Interactions, 181, 154–167. doi:10.1016/j.cbi.2009.07.001.

    Article  CAS  PubMed  Google Scholar 

  181. Tanel, A., Pallepati, P., Bettaieb, A., Morin, P., & Averill-Bates, D. A. (2014). Acrolein activates cell survival and apoptotic death responses involving the endoplasmic reticulum in A549 lung cells. Biochimica et Biophysica Acta, 1843, 827–835. doi:10.1016/j.bbamcr.2013.12.012.

    Article  CAS  PubMed  Google Scholar 

  182. Ryter, S. W., Lee, S. J., & Choi, A. M. (2010). Autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. Expert Review of Respiratory Medicine, 4, 573–584. doi:10.1586/ers.10.61.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Yousefi, S., Perozzo, R., Schmid, I., Ziemiecki, A., Schaffner, T., Scapozza, L., Brunner, T., & Simon, H. U. (2006). Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nature Cell Biology, 8, 1124–1132. doi:10.1038/ncb1482.

    Article  CAS  PubMed  Google Scholar 

  184. Langen, R. C., Gosker, H. R., Remels, A. H., & Schols, A. M. (2013). Triggers and mechanisms of skeletal muscle wasting in chronic obstructive pulmonary disease. The International Journal of Biochemistry & Cell Biology, 45, 2245–2256. doi:10.1016/j.biocel.2013.06.015.

    Article  CAS  Google Scholar 

  185. Kent, B. D., Mitchell, P. D., & McNicholas, W. T. (2011). Hypoxemia in patients with COPD: Cause, effects, and disease progression. International Journal of Chronic Obstructive Pulmonary Disease, 6, 199–208. doi:10.2147/COPD.S10611.

    PubMed  PubMed Central  Google Scholar 

  186. Zhang, J., Patel, J. M., & Block, E. R. (1998). Hypoxia-specific upregulation of calpain activity and gene expression in pulmonary artery endothelial cells. The American Journal of Physiology, 275, L461–L468.

    CAS  PubMed  Google Scholar 

  187. McClung, J. M., Judge, A. R., Talbert, E. E., & Powers, S. K. (2009). Calpain-1 is required for hydrogen peroxide-induced myotube atrophy. American Journal of Physiology. Cell Physiology, 296, C363–C371. doi:10.1152/ajpcell.00497.2008.

    Article  CAS  PubMed  Google Scholar 

  188. Dargelos, E., Brule, C., Stuelsatz, P., Mouly, V., Veschambre, P., Cottin, P., & Poussard, S. (2010). Up-regulation of calcium-dependent proteolysis in human myoblasts under acute oxidative stress. Experimental Cell Research, 316, 115–125. doi:10.1016/j.yexcr.2009.07.025.

    Article  CAS  PubMed  Google Scholar 

  189. Whidden, M. A., Smuder, A. J., Wu, M., & Hudson, M. B. (1985). Nelson WB and powers SK (2010) oxidative stress is required for mechanical ventilation-induced protease activation in the diaphragm. Journal of Applied Physiology, 108, 1376–1382. doi:10.1152/japplphysiol.00098.2010.

    Article  CAS  Google Scholar 

  190. Smuder, A. J., Kavazis, A. N., Hudson, M. B., Nelson, W. B., & Powers, S. K. (2010). Oxidation enhances myofibrillar protein degradation via calpain and caspase-3. Free Radical Biology & Medicine, 49, 1152–1160. doi:10.1016/j.freeradbiomed.2010.06.025.

    Article  CAS  Google Scholar 

  191. Chhabra, S. K. (2010). Pulmonary hypertension associated with chronic obstructive pulmonary disease. The Indian Journal of Chest Diseases & Allied Sciences, 52, 29–40.

    Google Scholar 

  192. Xing, A. P., Hu, X. Y., Shi, Y. W., & Du, Y. C. (2012). Implication of PDGF signaling in cigarette smoke-induced pulmonary arterial hypertension in rat. Inhalation Toxicology, 24, 468–475. doi:10.3109/08958378.2012.688885.

    Article  CAS  PubMed  Google Scholar 

  193. Ma, W., Han, W., Greer, P. A., Tuder, R. M., Toque, H. A., Wang, K. K., Caldwell, R. W., & Su, Y. (2011). Calpain mediates pulmonary vascular remodeling in rodent models of pulmonary hypertension, and its inhibition attenuates pathologic features of disease. The Journal of Clinical Investigation, 121, 4548–4566. doi:10.1172/JCI57734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wan, F., Letavernier, E., Abid, S., Houssaini, A., Czibik, G., Marcos, E., Rideau, D., Parpaleix, A., Lipskaia, L., Amsellem, V., Gellen, B., Sawaki, D., Derumeaux, G., Dubois-Rande, J. L., Delcroix, M., Quarck, R., Baud, L., & Adnot, S. (2016). Extracellular calpain/calpastatin balance is involved in the progression of pulmonary hypertension. American Journal of Respiratory Cell and Molecular Biology, 55, 337–351. doi:10.1165/rcmb.2015-0257OC.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunchao Su M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kovacs, L., Su, Y. (2017). Redox-Dependent Calpain Signaling in Airway and Pulmonary Vascular Remodeling in COPD. In: Wang, YX. (eds) Pulmonary Vasculature Redox Signaling in Health and Disease. Advances in Experimental Medicine and Biology, vol 967. Springer, Cham. https://doi.org/10.1007/978-3-319-63245-2_9

Download citation

Publish with us

Policies and ethics