Skip to main content

Reactive Oxygen Species in COPD-Related Vascular Remodeling

  • Chapter
  • First Online:
Pulmonary Vasculature Redox Signaling in Health and Disease

Abstract

The pathogenesis of chronic obstructive pulmonary disease (COPD) is a multifaceted process involving the alteration of pulmonary vasculature. Such vascular remodeling can be associated with inflammation, shear stress, and hypoxia—conditions commonly seen in patients with lung diseases. Particularly, the overproduction of reactive oxygen species (ROS) in the diseased lungs contributes greatly to pulmonary vascular remodeling. ROS play an important role in vascular homeostasis, yet excessive ROS can alter pulmonary vasculature and impair lung function, as implicated in COPD at all stages. Increased inflammatory cell infiltration and endothelial dysfunction both correspond to the severity of COPD. As a byproduct of vascular remodeling, pulmonary hypertension negatively affects the long-term survival rate of COPD patients. While there is currently no cure for COPD, several treatment options have focused on alleviating COPD symptoms. Interventions such as long-term oxygen therapy, endothelium-targeted treatment, and pharmacological therapies show promising results in improving the life span of COPD patients and attenuating the progression of pulmonary hypertension. In this chapter, we aim to discuss the contributing factors of pulmonary vascular remodeling in COPD with an emphasis on the ROS, as well as potential redox treatments for COPD-related vascular remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siafakas, N. M., Antoniou, K. M., & Tzortzaki, E. G. (2007). Role of angiogenesis and vascular remodeling in chronic obstructive pulmonary disease. International Journal of Chronic Obstructive Pulmonary Disease, 2(4), 453–462.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Young, I. H., & Bye, P. T. (2011). Gas exchange in disease: Asthma, chronic obstructive pulmonary disease, cystic fibrosis, and interstitial lung disease. Comprehensive Physiology, 1(2), 663–697. doi:10.1002/cphy.c090012.

    Article  PubMed  Google Scholar 

  3. Renna, N. F., de Las, H. N., & Miatello, R. M. (2013). Pathophysiology of vascular remodeling in hypertension. International Journal of Hypertension, 2013, 808353. doi:10.1155/2013/808353.

    PubMed  PubMed Central  Google Scholar 

  4. Man, S. F., Van Eeden, S., & Sin, D. D. (2012). Vascular risk in chronic obstructive pulmonary disease: Role of inflammation and other mediators. The Canadian Journal of Cardiology, 28(6), 653–661. doi:10.1016/j.cjca.2012.06.013.

    Article  PubMed  Google Scholar 

  5. Zhang, Y. J., Iqbal, J., van Klaveren, D., Campos, C. M., Holmes, D. R., Kappetein, A. P., et al. (2015). Smoking is associated with adverse clinical outcomes in patients undergoing revascularization with PCI or CABG: The SYNTAX trial at 5-year follow-up. Journal of the American College of Cardiology, 65(11), 1107–1115. doi:10.1016/j.jacc.2015.01.014.

    Article  PubMed  Google Scholar 

  6. Kasahara, Y., Tuder, R. M., Taraseviciene-Stewart, L., Le Cras, T. D., Abman, S., Hirth, P. K., et al. (2000). Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. The Journal of Clinical Investigation, 106(11), 1311–1319. doi:10.1172/JCI10259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tuder, R. M., Yun, J. H., Bhunia, A., & Fijalkowska, I. (2007). Hypoxia and chronic lung disease. Journal of Molecular Medicine, 85(12), 1317–1324. doi:10.1007/s00109-007-0280-4.

    Article  PubMed  Google Scholar 

  8. Wagner, P. D. (2011). The critical role of VEGF in skeletal muscle angiogenesis and blood flow. Biochemical Society Transactions, 39(6), 1556–1559. doi:10.1042/BST20110646.

    Article  CAS  PubMed  Google Scholar 

  9. Giordano, R. J., Lahdenranta, J., Zhen, L., Chukwueke, U., Petrache, I., Langley, R. R., et al. (2008). Targeted induction of lung endothelial cell apoptosis causes emphysema-like changes in the mouse. The Journal of Biological Chemistry, 283(43), 29447–29460. doi:10.1074/jbc.M804595200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kirkham, P. A., & Barnes, P. J. (2013). Oxidative stress in COPD. Chest, 144(1), 266–273. doi:10.1378/chest.12-2664.

    Article  CAS  PubMed  Google Scholar 

  11. Aggarwal, S., Gross, C. M., Sharma, S., Fineman, J. R., & Black, S. M. (2013). Reactive oxygen species in pulmonary vascular remodeling. Comprehensive Physiology, 3(3), 1011–1034. doi:10.1002/cphy.c120024.

    PubMed  PubMed Central  Google Scholar 

  12. Birukov, K. G. (2009). Cyclic stretch, reactive oxygen species, and vascular remodeling. Antioxidants & Redox Signaling, 11(7), 1651–1667. doi:10.1089/ARS.2008.2390.

    Article  CAS  Google Scholar 

  13. van Eeden, S. F., & Sin, D. D. (2013). Oxidative stress in chronic obstructive pulmonary disease: A lung and systemic process. Canadian Respiratory Journal, 20(1), 27–29.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ciencewicki, J., Trivedi, S., Kleeberger, S. R. (2008). Oxidants and the pathogenesis of lung diseases. The Journal of Allergy and Clinical Immunology, 122(3), 456–68; quiz 69–70. doi:10.1016/j.jaci.2008.08.004.

  15. Donohue, J. F. (2006). Ageing, smoking and oxidative stress. Thorax, 61(6), 461–462. doi:10.1136/thx.2005.053058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Firth, A. L., Yuill, K. H., & Smirnov, S. V. (2008). Mitochondria-dependent regulation of Kv currents in rat pulmonary artery smooth muscle cells. American Journal of Physiology Lung Cellular and Molecular Physiology, 295(1), L61–L70. doi:10.1152/ajplung.90243.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vokurkova, M., Xu, S., & Touyz, R. M. (2007). Reactive oxygen species, cell growth, cell cycle progression and vascular remodeling in hypertension. Future Cardiology, 3(1), 53–63. doi:10.2217/14796678.3.1.53.

    Article  CAS  PubMed  Google Scholar 

  18. Althoff, T. F., & Offermanns, S. (2015). G-protein-mediated signaling in vascular smooth muscle cells—Implications for vascular disease. Journal of Molecular Medicine, 93(9), 973–981. doi:10.1007/s00109-015-1305-z.

    Article  CAS  PubMed  Google Scholar 

  19. Rzucidlo, E. M., Martin, K. A., & Powell, R. J. (2007). Regulation of vascular smooth muscle cell differentiation. Journal of Vascular Surgery, 45(Suppl A), A25–A32. doi:10.1016/j.jvs.2007.03.001.

    Article  PubMed  Google Scholar 

  20. Djonov, V., Baum, O., & Burri, P. H. (2003). Vascular remodeling by intussusceptive angiogenesis. Cell and Tissue Research, 314(1), 107–117. doi:10.1007/s00441-003-0784-3.

    Article  PubMed  Google Scholar 

  21. Leopold, J. A., & Maron, B. A. (2016). Molecular mechanisms of pulmonary vascular remodeling in pulmonary arterial hypertension. International Journal of Molecular Sciences, 17(5), 761. doi:10.3390/ijms17050761.

    Article  PubMed Central  Google Scholar 

  22. Zhang, L. L., Xie, P., Wang, J. Z., Yang, Q. W., Fang, C. Q., Zhou, S., et al. (2010). Impaired peroxisome proliferator-activated receptor-gamma contributes to phenotypic modulation of vascular smooth muscle cells during hypertension. Journal of Biological Chemistry, 285(18), 13666–13677. doi:10.1074/jbc.M109.087718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goncharova, E. A. (2013). mTOR and vascular remodeling in lung diseases: Current challenges and therapeutic prospects. FASEB Journal, 27(5), 1796–1807. doi:10.1096/fj.12-222224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sakao, S., Tatsumi, K., & Voelkel, N. F. (2009). Endothelial cells and pulmonary arterial hypertension: Apoptosis, proliferation, interaction and transdifferentiation. Respiratory Research, 10, 95. doi:10.1186/1465-9921-10-95.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xu, J., & Shi, G. P. (2014). Vascular wall extracellular matrix proteins and vascular diseases. Biochimica et Biophysica Acta, 1842(11), 2106–2119. doi:10.1016/j.bbadis.2014.07.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weir-McCall, J. R., Struthers, A. D., Lipworth, B. J., & Houston, J. G. (2015). The role of pulmonary arterial stiffness in COPD. Respiratory Medicine, 109(11), 1381–1390. doi:10.1016/j.rmed.2015.06.005.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hassoun, P. M., Mouthon, L., Barbera, J. A., Eddahibi, S., Flores, S. C., Grimminger, F., et al. (2009). Inflammation, growth factors, and pulmonary vascular remodeling. Journal of the American College of Cardiology, 54(1 Suppl), S10–S19. doi:10.1016/j.jacc.2009.04.006.

    Article  CAS  PubMed  Google Scholar 

  28. Voelkel, N. F., & Tuder, R. M. (2000). Hypoxia-induced pulmonary vascular remodeling: A model for what human disease? The Journal of Clinical Investigation, 106(6), 733–738. doi:10.1172/JCI11144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stenmark, K. R., Nozik-Grayck, E., Gerasimovskaya, E., Anwar, A., Li, M., Riddle, S., et al. (2011). The adventitia: Essential role in pulmonary vascular remodeling. Comprehensive Physiology, 1(1), 141–161. doi:10.1002/cphy.c090017.

    PubMed  PubMed Central  Google Scholar 

  30. Shimoda, L. A., & Laurie, S. S. (2013). Vascular remodeling in pulmonary hypertension. Journal of Molecular Medicine, 91(3), 297–309. doi:10.1007/s00109-013-0998-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chan, S. Y., & Loscalzo, J. (2011). Pulmonary vascular disease related to hemodynamic stress in the pulmonary circulation. Comprehensive Physiology, 1(1), 123–139. doi:10.1002/cphy.c090004.

    PubMed  PubMed Central  Google Scholar 

  32. Xu, S., & Touyz, R. M. (2006). Reactive oxygen species and vascular remodelling in hypertension: Still alive. The Canadian Journal of Cardiology, 22(11), 947–951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Granger, D. N., & Kvietys, P. R. (2015). Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biology, 6, 524–551. doi:10.1016/j.redox.2015.08.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Paiva, C. N., & Bozza, M. T. (2014). Are reactive oxygen species always detrimental to pathogens? Antioxidants & Redox Signaling, 20(6), 1000–1037. doi:10.1089/ars.2013.5447.

    Article  CAS  Google Scholar 

  35. Zuo, L., Zhou, T., Pannell, B. K., Ziegler, A. C., & Best, T. M. (2015). Biological and physiological role of reactive oxygen species—The good, the bad and the ugly. Acta Physiologica, 214(3), 329–348. doi:10.1111/apha.12515.

    Article  CAS  PubMed  Google Scholar 

  36. Kwak, D. J., Kwak, S. D., & Gauda, E. B. (2006). The effect of hyperoxia on reactive oxygen species (ROS) in rat petrosal ganglion neurons during development using organotypic slices. Pediatric Research, 60(4), 371–376. doi:10.1203/01.pdr.0000239817.39407.61.

    Article  CAS  PubMed  Google Scholar 

  37. Paddenberg, R., Goldenberg, A., Faulhammer, P., Braun-Dullaeus, R. C., & Kummer, W. (2003). Mitochondrial complex II is essential for hypoxia-induced ROS generation and vasoconstriction in the pulmonary vasculature. Advances in Experimental Medicine and Biology, 536, 163–169.

    Article  CAS  PubMed  Google Scholar 

  38. Zuo, L., Hallman, A. H., Roberts, W. J., Wagner, P. D., & Hogan, M. C. (2014). Superoxide release from contracting skeletal muscle in pulmonary TNF-alpha overexpression mice. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 306(1), R75–R81. doi:10.1152/ajpregu.00425.2013.

    Article  CAS  PubMed  Google Scholar 

  39. Zuo, L., Shiah, A., Roberts, W. J., Chien, M. T., Wagner, P. D., & Hogan, M. C. (2013). Low Po(2) conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 304(11), R1009–R1016. doi:10.1152/ajpregu.00563.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dengler, V. L., Galbraith, M. D., & Espinosa, J. M. (2014). Transcriptional regulation by hypoxia inducible factors. Critical Reviews in Biochemistry and Molecular Biology, 49(1), 1–15. doi:10.3109/10409238.2013.838205.

    Article  CAS  PubMed  Google Scholar 

  41. Ismail, S., Sturrock, A., Wu, P., Cahill, B., Norman, K., Huecksteadt, T., et al. (2009). NOX4 mediates hypoxia-induced proliferation of human pulmonary artery smooth muscle cells: The role of autocrine production of transforming growth factor-{beta}1 and insulin-like growth factor binding protein-3. American Journal of Physiology Lung Cellular and Molecular Physiology, 296(3), L489–L499. doi:10.1152/ajplung.90488.2008.

    Article  CAS  PubMed  Google Scholar 

  42. Koli, K., Myllarniemi, M., Keski-Oja, J., & Kinnula, V. L. (2008). Transforming growth factor-beta activation in the lung: Focus on fibrosis and reactive oxygen species. Antioxidants & Redox Signaling, 10(2), 333–342. doi:10.1089/ars.2007.1914.

    Article  CAS  Google Scholar 

  43. Lei, H., & Kazlauskas, A. (2014). A reactive oxygen species-mediated, self-perpetuating loop persistently activates platelet-derived growth factor receptor alpha. Molecular and Cellular Biology, 34(1), 110–122. doi:10.1128/MCB.00839-13.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stenmark, K. R., Fagan, K. A., & Frid, M. G. (2006). Hypoxia-induced pulmonary vascular remodeling: Cellular and molecular mechanisms. Circulation Research, 99(7), 675–691. doi:10.1161/01.RES.0000243584.45145.3f.

    Article  CAS  PubMed  Google Scholar 

  45. Stenmark, K. R., Yeager, M. E., El Kasmi, K. C., Nozik-Grayck, E., Gerasimovskaya, E. V., Li, M., et al. (2013). The adventitia: Essential regulator of vascular wall structure and function. Annual Review of Physiology, 75, 23–47. doi:10.1146/annurev-physiol-030212-183802.

    Article  CAS  PubMed  Google Scholar 

  46. Satoh, K., Nigro, P., & Berk, B. C. (2010). Oxidative stress and vascular smooth muscle cell growth: A mechanistic linkage by cyclophilin a. Antioxidants & Redox Signaling, 12(5), 675–682. doi:10.1089/ars.2009.2875.

    Article  CAS  Google Scholar 

  47. Chaouat, A., Naeije, R., & Weitzenblum, E. (2008). Pulmonary hypertension in COPD. The European Respiratory Journal, 32(5), 1371–1385. doi:10.1183/09031936.00015608.

    Article  CAS  PubMed  Google Scholar 

  48. Santos, S., Peinado, V. I., Ramirez, J., Melgosa, T., Roca, J., Rodriguez-Roisin, R., et al. (2002). Characterization of pulmonary vascular remodelling in smokers and patients with mild COPD. The European Respiratory Journal, 19(4), 632–638.

    Article  CAS  PubMed  Google Scholar 

  49. Peinado, V. I., Pizarro, S., & Barbera, J. A. (2008). Pulmonary vascular involvement in COPD. Chest, 134(4), 808–814. doi:10.1378/chest.08-0820.

    Article  CAS  PubMed  Google Scholar 

  50. Minai, O. A., Chaouat, A., & Adnot, S. (2010). Pulmonary hypertension in COPD: Epidemiology, significance, and management: Pulmonary vascular disease: The global perspective. Chest, 137(6 Suppl), 39S–51S. doi:10.1378/chest.10-0087.

    Article  PubMed  Google Scholar 

  51. Ferrer, E., Peinado, V. I., Diez, M., Carrasco, J. L., Musri, M. M., Martinez, A., et al. (2009). Effects of cigarette smoke on endothelial function of pulmonary arteries in the guinea pig. Respiratory Research, 10, 76. doi:10.1186/1465-9921-10-76.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tuder, R. M., Kasahara, Y., & Voelkel, N. F. (2000). Inhibition of vascular endothelial growth factor receptors causes emphysema in rats. Chest, 117(5), 281s. doi:10.1378/chest.117.5_suppl_1.281S.

    Article  CAS  PubMed  Google Scholar 

  53. Zuo, L., He, F., Sergakis, G. G., Koozehchian, M. S., Stimpfl, J. N., Rong, Y., et al. (2014). Interrelated role of cigarette smoking, oxidative stress, and immune response in COPD and corresponding treatments. American Journal of Physiology Lung Cellular and Molecular Physiology, 307(3), L205–L218. doi:10.1152/ajplung.00330.2013.

    Article  CAS  PubMed  Google Scholar 

  54. Seimetz, M., Weissmann, N., & Clauss, M. (2014). Pulmonary hypertension precedes emphysema: Paradigm shift or artifact of rodent studies? Angiol Open Access, 2(3), e108. doi:10.4172/2329-9495.1000e108.

    Google Scholar 

  55. Alagappan, V. K., de Boer, W. I., Misra, V. K., Mooi, W. J., & Sharma, H. S. (2013). Angiogenesis and vascular remodeling in chronic airway diseases. Cell Biochemistry and Biophysics, 67(2), 219–234. doi:10.1007/s12013-013-9713-6.

    Article  CAS  PubMed  Google Scholar 

  56. Sakao, S., Tatsumi, K., & Voelkel, N. F. (2010). Reversible or irreversible remodeling in pulmonary arterial hypertension. American Journal of Respiratory Cell and Molecular Biology, 43(6), 629–634. doi:10.1165/rcmb.2009-0389TR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Facemire, C. S., Nixon, A. B., Griffiths, R., Hurwitz, H., & Coffman, T. M. (2009). Vascular endothelial growth factor receptor 2 controls blood pressure by regulating nitric oxide synthase expression. Hypertension, 54(3), 652–658. doi:10.1161/HYPERTENSIONAHA.109.129973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ferrara, N., Gerber, H. P., & LeCouter, J. (2003). The biology of VEGF and its receptors. Nature Medicine, 9(6), 669–676. doi:10.1038/nm0603-669.

    Article  CAS  PubMed  Google Scholar 

  59. Garcia-Lucio, J., Argemi, G., Tura-Ceide, O., Diez, M., Paul, T., Bonjoch, C., et al. (2016). Gene expression profile of angiogenic factors in pulmonary arteries in COPD: Relationship with vascular remodeling. American Journal of Physiology Lung Cellular and Molecular Physiology, 310(7), L583–L592. doi:10.1152/ajplung.00261.2015.

    Article  PubMed  Google Scholar 

  60. Zanini, A., Chetta, A., Imperatori, A. S., Spanevello, A., & Olivieri, D. (2010). The role of the bronchial microvasculature in the airway remodelling in asthma and COPD. Respiratory Research, 11, 132. doi:10.1186/1465-9921-11-132.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ferroni, P., Della-Morte, D., Palmirotta, R., Rundek, T., Guadagni, F., & Roselli, M. (2012). Angiogenesis and hypertension: The dual role of anti-hypertensive and anti-angiogenic therapies. Current Vascular Pharmacology, 10(4), 479–493.

    Article  CAS  PubMed  Google Scholar 

  62. Cornwell, W. D., Kim, V., Song, C., & Rogers, T. J. (2010). Pathogenesis of inflammation and repair in advanced COPD. Seminars in Respiratory and Critical Care Medicine, 31(3), 257–266. doi:10.1055/s-0030-1254066.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Schoenborn, J. R., & Wilson, C. B. (2007). Regulation of interferon-gamma during innate and adaptive immune responses. Advances in Immunology, 96, 41–101. doi:10.1016/S0065-2776(07)96002-2.

    Article  CAS  PubMed  Google Scholar 

  64. Yang, Q., Shigemura, N., Underwood, M. J., Hsin, M., Xue, H. M., Huang, Y., et al. (2012). NO and EDHF pathways in pulmonary arteries and veins are impaired in COPD patients. Vascular Pharmacology, 57(2–4), 113–118. doi:10.1016/j.vph.2012.05.004.

    Article  CAS  PubMed  Google Scholar 

  65. Wanner, A., & Mendes, E. S. (2010). Airway endothelial dysfunction in asthma and chronic obstructive pulmonary disease a challenge for future research. American Journal of Respiratory and Critical Care, 182(11), 1344–1351. doi:10.1164/rccm.201001-0038PP.

    Article  Google Scholar 

  66. Minai, O. A., Fessler, H., Stoller, J. K., Criner, G. J., Scharf, S. M., Meli, Y., et al. (2014). Clinical characteristics and prediction of pulmonary hypertension in severe emphysema. Respiratory Medicine, 108(3), 482–490. doi:10.1016/j.rmed.2013.11.006.

    Article  PubMed  Google Scholar 

  67. Weitzenblum, E., Hirth, C., Ducolone, A., Mirhom, R., Rasaholinjanahary, J., & Ehrhart, M. (1981). Prognostic value of pulmonary artery pressure in chronic obstructive pulmonary disease. Thorax, 36(10), 752–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Elwing, J., & Panos, R. J. (2008). Pulmonary hypertension associated with COPD. International Journal of Chronic Obstructive Pulmonary Disease, 3(1), 55–70.

    PubMed  PubMed Central  Google Scholar 

  69. Kent, B. D., Mitchell, P. D., & McNicholas, W. T. (2011). Hypoxemia in patients with COPD: Cause, effects, and disease progression. International Journal of Chronic Obstructive Pulmonary Disease, 6, 199–208. doi:10.2147/COPD.S10611.

    PubMed  PubMed Central  Google Scholar 

  70. Wong, C. M., Bansal, G., Pavlickova, L., Marcocci, L., & Suzuki, Y. J. (2013). Reactive oxygen species and antioxidants in pulmonary hypertension. Antioxidants & Redox Signaling, 18(14), 1789–1796. doi:10.1089/ars.2012.4568.

    Article  CAS  Google Scholar 

  71. Zuo, L., Rose, B. A., Roberts, W. J., He, F., & Banes-Berceli, A. K. (2014). Molecular characterization of reactive oxygen species in systemic and pulmonary hypertension. American Journal of Hypertension, 27(5), 643–650. doi:10.1093/ajh/hpt292.

    Article  CAS  PubMed  Google Scholar 

  72. Nakamura, A., Kasamatsu, N., Hashizume, I., Shirai, T., Hanzawa, S., Momiki, S., et al. (2000). Effects of hemoglobin on pulmonary arterial pressure and pulmonary vascular resistance in patients with chronic emphysema. Respiration, 67(5), 502–506. doi:67463.

    Article  CAS  PubMed  Google Scholar 

  73. York, E. L., Jones, R. L., Menon, D., & Sproule, B. J. (1980). Effects of secondary polycythemia on cerebral blood flow in chronic obstructive pulmonary disease. The American Review of Respiratory Disease, 121(5), 813–818. doi:10.1164/arrd.1980.121.5.813.

    CAS  PubMed  Google Scholar 

  74. Agusti, A. G. (2005). Systemic effects of chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society, 2(4),367–370; discussion 71–72. doi:10.1513/pats.200504-026SR.

  75. Jensen, K., Nizamutdinov, D., Guerrier, M., Afroze, S., Dostal, D., & Glaser, S. (2012). General mechanisms of nicotine-induced fibrogenesis. FASEB Journal, 26(12), 4778–4787. doi:10.1096/fj.12-206458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Helen, A., Krishnakumar, K., Vijayammal, P. L., & Augusti, K. T. (2000). Antioxidant effect of onion oil (Allium cepa. Linn) on the damages induced by nicotine in rats as compared to alpha-tocopherol. Toxicology Letters, 116(1–2), 61–68.

    Article  CAS  PubMed  Google Scholar 

  77. Kaplan, P., Tatarkova, Z., Engler, I., Calkovska, A., Mokra, D., Drgova, A., et al. (2009). Effects of long-term oxygen treatment on alpha-ketoglutarate dehydrogenase activity and oxidative modifications in mitochondria of the guinea pig heart. European Journal of Medical Research, 14(Suppl 4), 116–120.

    PubMed  PubMed Central  Google Scholar 

  78. Petty, T. L., & Bliss, P. L. (2000). Ambulatory oxygen therapy, exercise, and survival with advanced chronic obstructive pulmonary disease (the Nocturnal Oxygen Therapy Trial revisited). Respiratory Care, 45(2), 204–211; discussion 11–3.

    Google Scholar 

  79. Ulrich, S., Keusch, S., Hildenbrand, F. F., Lo Cascio, C., Huber, L. C., Tanner, F. C., et al. (2015). Effect of nocturnal oxygen and acetazolamide on exercise performance in patients with pre-capillary pulmonary hypertension and sleep-disturbed breathing: Randomized, double-blind, cross-over trial. European Heart Journal, 36(10), 615–623. doi:10.1093/eurheartj/eht540.

    Article  CAS  PubMed  Google Scholar 

  80. Brill, S. E., & Wedzicha, J. A. (2014). Oxygen therapy in acute exacerbations of chronic obstructive pulmonary disease. International Journal of Chronic Obstructive Pulmonary Disease, 9, 1241–1252. doi:10.2147/COPD.S41476.

    PubMed  PubMed Central  Google Scholar 

  81. Agusti, A., & Soriano, J. B. (2006). Dynamic hyperinflation and pulmonary inflammation: A potentially relevant relationship? European Respiratory Review, 15(100), 68–71. doi:10.1183/09059180.00010003.

    Article  Google Scholar 

  82. Kim, V., Benditt, J. O., Wise, R. A., & Sharafkhaneh, A. (2008). Oxygen therapy in chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society, 5(4), 513–518. doi:10.1513/pats.200708-124ET.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Carpagnano, G. E., Kharitonov, S. A., Foschino-Barbaro, M. P., Resta, O., Gramiccioni, E., & Barnes, P. J. (2004). Supplementary oxygen in healthy subjects and those with COPD increases oxidative stress and airway inflammation. Thorax, 59(12), 1016–1019. doi:10.1136/thx.2003.020768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Phillips, M., Cataneo, R. N., Greenberg, J., Grodman, R., Gunawardena, R., & Naidu, A. (2003). Effect of oxygen on breath markers of oxidative stress. The European Respiratory Journal, 21(1), 48–51.

    Article  CAS  PubMed  Google Scholar 

  85. Calkovska, A., Engler, I., Mokra, D., Drgova, A., Sivonova, M., Tartarkova, Z., et al. (2008). Differences in oxidative status, lung function, and pulmonary surfactant during long-term inhalation of medical oxygen and partially ionized oxygen in guinea pigs. Journal of Physiology and Pharmacology, 59(Suppl 6), 173–181.

    PubMed  Google Scholar 

  86. Chen, X., Tang, S., Liu, K., Li, Q., Kong, H., Zeng, X., et al. (2015). Therapy in stable chronic obstructive pulmonary disease patients with pulmonary hypertension: A systematic review and meta-analysis. Journal of Thoracic Disease, 7(3), 309–319. doi:10.3978/j.issn.2072-1439.2015.02.08.

    PubMed  PubMed Central  Google Scholar 

  87. Stolz, D., Rasch, H., Linka, A., Di Valentino, M., Meyer, A., Brutsche, M., et al. (2008). A randomised, controlled trial of bosentan in severe COPD. The European Respiratory Journal, 32(3), 619–628. doi:10.1183/09031936.00011308.

    Article  CAS  PubMed  Google Scholar 

  88. John, M. E., Cockcroft, J. R., McKeever, T. M., Coward, W. R., Shale, D. J., Johnson, S. R., et al. (2015). Cardiovascular and inflammatory effects of simvastatin therapy in patients with COPD: A randomized controlled trial. International Journal of Chronic Obstructive Pulmonary Disease, 10, 211–221. doi:10.2147/COPD.S76061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ingebrigtsen, T. S., Marott, J. L., Nordestgaard, B. G., Lange, P., Hallas, J., & Vestbo, J. (2015). Statin use and exacerbations in individuals with chronic obstructive pulmonary disease. Thorax, 70(1), 33–40. doi:10.1136/thoraxjnl-2014-205795.

    Article  PubMed  Google Scholar 

  90. Dobler, C. C., Wong, K. K., & Marks, G. B. (2009). Associations between statins and COPD: A systematic review. BMC Pulmonary Medicine, 9, 32. doi:10.1186/1471-2466-9-32.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Reed, R. M., Iacono, A., DeFilippis, A., Jones, S., Eberlein, M., Lechtzin, N., et al. (2011). Statin therapy is associated with decreased pulmonary vascular pressures in severe COPD. COPD, 8(2), 96–102. doi:10.3109/15412555.2011.558545.

    Article  PubMed  Google Scholar 

  92. Deo, S. H., Fisher, J. P., Vianna, L. C., Kim, A., Chockalingam, A., Zimmerman, M. C., et al. (2012). Statin therapy lowers muscle sympathetic nerve activity and oxidative stress in patients with heart failure. American Journal of Physiology Heart and Circulatory Physiology, 303(3), H377–H385. doi:10.1152/ajpheart.00289.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhao, J., Zhang, X., Dong, L., Wen, Y., & Cui, L. (2014). The many roles of statins in ischemic stroke. Current Neuropharmacology, 12(6), 564–574. doi:10.2174/1570159X12666140923210929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shishehbor, M. H., Brennan, M. L., Aviles, R. J., Fu, X., Penn, M. S., Sprecher, D. L., et al. (2003). Statins promote potent systemic antioxidant effects through specific inflammatory pathways. Circulation, 108(4), 426–431. doi:10.1161/01.CIR.0000080895.05158.8B.

    Article  CAS  PubMed  Google Scholar 

  95. Rahman, I., & Kinnula, V. L. (2012). Strategies to decrease ongoing oxidant burden in chronic obstructive pulmonary disease. Expert Review of Clinical Pharmacology, 5(3), 293–309. doi:10.1586/ecp.12.16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We thank Tingyang Zhou, Zan Xu, and Evan Prather for their assistance.

Conflict of Interest: The authors have no conflicts of interest for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zuo Ph.D., F.A.C.S.M. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zuo, L., Chuang, CC., Clark, A.D., Garrison, D.E., Kuhlman, J.L., Sypert, D.C. (2017). Reactive Oxygen Species in COPD-Related Vascular Remodeling. In: Wang, YX. (eds) Pulmonary Vasculature Redox Signaling in Health and Disease. Advances in Experimental Medicine and Biology, vol 967. Springer, Cham. https://doi.org/10.1007/978-3-319-63245-2_26

Download citation

Publish with us

Policies and ethics