Skip to main content

A Transfinite Knuth–Bendix Order for Lambda-Free Higher-Order Terms

  • Conference paper
  • First Online:
Automated Deduction – CADE 26 (CADE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10395))

Included in the following conference series:

Abstract

We generalize the Knuth–Bendix order (KBO) to higher-order terms without \(\lambda \)-abstraction. The restriction of this new order to first-order terms coincides with the traditional KBO. The order has many useful properties, including transitivity, the subterm property, compatibility with contexts (monotonicity), stability under substitution, and well-foundedness. Transfinite weights and argument coefficients can also be supported. The order appears promising as the basis of a higher-order superposition calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews, P.B., Cohen, E.L.: Theorem proving in type theory. In: Reddy, R. (ed.) IJCAI 1977, p. 566. William Kaufmann (1977)

    Google Scholar 

  2. Aoto, T., Yamada, T.: Termination of simply typed term rewriting by translation and labelling. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 380–394. Springer, Heidelberg (2003). doi:10.1007/3-540-44881-0_27

    Chapter  Google Scholar 

  3. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  4. Backes, J., Brown, C.E.: Analytic tableaux for higher-order logic with choice. J. Autom. Reasoning 47(4), 451–479 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Banâtre, J.-P., Fradet, P., Radenac, Y.: Generalised multisets for chemical programming. Math. Struct. Comput. Sci. 16(4), 557–580 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Becker, H., Blanchette, J.C., Waldmann, U., Wand, D.: Formalization of Knuth-Bendix orders for lambda-free higher-order terms. Archive of Formal Proofs (2016). Formal proof development, https://isa-afp.org/entries/Lambda_Free_KBOs.shtml

  7. Becker, H., Blanchette, J.C., Waldmann, U., Wand, D.: Transfinite Knuth-Bendix orders for lambda-free higher-order terms. Tech. report (2017), http://cs.vu.nl/~jbe248/lambda_free_kbo_rep.pdf

  8. Beeson, M.: Lambda logic. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS, vol. 3097, pp. 460–474. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25984-8_34

    Chapter  Google Scholar 

  9. Benzmüller, C., Kohlhase, M.: Extensional higher-order resolution. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS, vol. 1421, pp. 56–71. Springer, Heidelberg (1998). doi:10.1007/BFb0054248

    Chapter  Google Scholar 

  10. Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Siekmann, J.H. (ed.) Computational Logic. Handbook of the History of Logic, vol. 9, pp. 215–254. Elsevier (2014)

    Google Scholar 

  11. Blanchette, J.C., Fleury, M., Traytel, D.: Formalization of nested multisets, hereditary multisets, and syntactic ordinals. Archive of Formal Proofs (2016). Formal proof development, https://isa-afp.org/entries/Nested_Multisets_Ordinals.shtml

  12. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.: Truly modular (Co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 93–110. Springer, Cham (2014). doi:10.1007/978-3-319-08970-6_7

    Google Scholar 

  13. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED. J. Formalized Reasoning 9(1), 101–148 (2016)

    MathSciNet  Google Scholar 

  14. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14052-5_11

    Chapter  Google Scholar 

  15. Blanchette, J.C., Waldmann, U., Wand, D.: Formalization of recursive path orders for lambda-free higher-order terms. Archive of Formal Proofs (2016). Formal proof development, https://isa-afp.org/entries/Lambda_Free_RPOs.shtml

  16. Blanchette, J.C., Waldmann, U., Wand, D.: A lambda-free higher-order recursive path order. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 461–479. Springer, Heidelberg (2017). doi:10.1007/978-3-662-54458-7_27

    Chapter  Google Scholar 

  17. Blanqui, F., Jouannaud, J.-P., Rubio, A.: The computability path ordering. Log. Meth. Comput. Sci. 11(4) (2015)

    Google Scholar 

  18. Bofill, M., Borralleras, C., Rodríguez-Carbonell, E., Rubio, A.: The recursive path and polynomial ordering for first-order and higher-order terms. J. Log. Comput. 23(1), 263–305 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bofill, M., Rubio, A.: Paramodulation with non-monotonic orderings and simplification. J. Autom. Reasoning 50(1), 51–98 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun. ACM 22(8), 465–476 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ferreira, M.C.F., Zantema, H.: Well-foundedness of term orderings. In: Dershowitz, N., Lindenstrauss, N. (eds.) CTRS 1994. LNCS, vol. 968, pp. 106–123. Springer, Heidelberg (1995). doi:10.1007/3-540-60381-6_7

    Chapter  Google Scholar 

  22. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination of higher-order functions. In: Gramlich, B. (ed.) FroCoS 2005. LNCS, vol. 3717, pp. 216–231. Springer, Heidelberg (2005). doi:10.1007/11559306_12

    Chapter  Google Scholar 

  23. Henkin, L.: Completeness in the theory of types. J. Symb. Log. 15(2), 81–91 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hirokawa, N., Middeldorp, A., Zankl, H.: Uncurrying for termination and complexity. J. Autom. Reasoning 50(3), 279–315 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huet, G., Oppen, D.C.: Equations and rewrite rules: a survey. In: Book, R.V. (ed.) Formal Language Theory: Perspectives and Open Problems, pp. 349–405. Academic Press (1980)

    Google Scholar 

  26. Huet, G.P.: A mechanization of type theory. In: Nilsson, N.J. (ed.) International Joint Conference on Artificial Intelligence (IJCAI 1973), pp. 139–146. William Kaufmann (1973)

    Google Scholar 

  27. Hughes, R.J.M.: Super-combinators: a new implementation method for applicative languages. In: LFP 1982, pp. 1–10. ACM Press (1982)

    Google Scholar 

  28. Jouannaud, J.-P., Rubio, A.: Polymorphic higher-order recursive path orderings. J. ACM 54(1), 2:1–2:48 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kennaway, R., Klop, J.W., Sleep, M.R., de Vries, F.: Comparing curried and uncurried rewriting. J. Symbolic Comput. 21(1), 15–39 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press (1970)

    Google Scholar 

  31. Kop, C.: Higher Order Termination. Ph.D. thesis, Vrije Universiteit Amsterdam (2012)

    Google Scholar 

  32. Kop, C., Raamsdonk, F.: A higher-order iterative path ordering. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS, vol. 5330, pp. 697–711. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89439-1_48

    Chapter  Google Scholar 

  33. Kovács, L., Moser, G., Voronkov, A.: On transfinite Knuth-Bendix orders. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 384–399. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6_29

    Chapter  Google Scholar 

  34. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_1

    Chapter  Google Scholar 

  35. Lifantsev, M., Bachmair, L.: An LPO-based termination ordering for higher-order terms without \(\lambda \)-abstraction. In: Grundy, J., Newey, M. (eds.) TPHOLs 1998. LNCS, vol. 1479, pp. 277–293. Springer, Heidelberg (1998). doi:10.1007/BFb0055142

    Chapter  Google Scholar 

  36. Löchner, B.: Things to know when implementing KBO. J. Autom. Reasoning 36(4), 289–310 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ludwig, M., Waldmann, U.: An extension of the Knuth-Bendix ordering with LPO-like properties. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS, vol. 4790, pp. 348–362. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75560-9_26

    Chapter  Google Scholar 

  38. McCune, W.: Otter 3.3 reference manual. Technical. Report 263 (2003)

    Google Scholar 

  39. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 371–443. Elsevier and MIT Press (2001)

    Google Scholar 

  40. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). doi:10.1007/3-540-45949-9

    MATH  Google Scholar 

  41. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45221-5_49

    Chapter  Google Scholar 

  42. Sternagel, C., Thiemann, R.: Executable multivariate polynomials. Archive of Formal Proofs (2010). Formal proof development, https://isa-afp.org/entries/Polynomials.shtml

  43. Sternagel, C., Thiemann, R.: Generalized and formalized uncurrying. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp. 243–258. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24364-6_17

    Chapter  Google Scholar 

  44. Sternagel, C., Thiemann, R.: Formalizing Knuth-Bendix orders and Knuth-Bendix completion. In: van Raamsdonk, F. (ed.) RTA 2013, vol. 21. LIPIcs, pp. 287–302. Schloss Dagstuhl (2013)

    Google Scholar 

  45. Sultana, N., Blanchette, J.C., Paulson, L.C.: LEO-II and Satallax on the Sledgehammer test bench. J. Applied Logic 11(1), 91–102 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Toyama, Y.: Termination of S-expression rewriting systems: lexicographic path ordering for higher-order terms. In: Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 40–54. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25979-4_3

    Chapter  Google Scholar 

  47. Turner, D.A.: A new implementation technique for applicative languages. Softw. Pract. Experience 9(1), 31–49 (1979)

    Article  MATH  Google Scholar 

  48. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 140–145. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02959-2_10

    Chapter  Google Scholar 

  49. Wisniewski, M., Steen, A., Kern, K., Benzmüller, C.: Effective normalization techniques for HOL. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS, vol. 9706, pp. 362–370. Springer, Cham (2016). doi:10.1007/978-3-319-40229-1_25

    Google Scholar 

  50. Zankl, H., Winkler, S., Middeldorp, A.: Beyond polynomials and Peano arithmetic–automation of elementary and ordinal interpretations. J. Symb. Comput. 69, 129–158 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zantema, H.: Termination. In: Bezem, M., Klop, J.W., de Vrijer, R. (eds.) Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55, pp. 181–259. Cambridge University Press, Cambridge (2003)

    Google Scholar 

Download references

Acknowledgment

We are grateful to Stephan Merz, Tobias Nipkow, and Christoph Weidenbach for making this research possible; to Mathias Fleury and Dmitriy Traytel for helping us formalize the syntactic ordinals; to Andrei Popescu and Christian Sternagel for advice with extending a partial well-founded order to a total one in the mechanized proof of Lemma 3; to Andrei Voronkov for the enlightening discussion about KBO at the IJCAR 2016 banquet; and to Carsten Fuhs, Mark Summerfield, and the anonymous reviewers for suggesting many textual improvements.

Blanchette has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 713999, Matryoshka). Wand is supported by the Deutsche Forschungsgemeinschaft (DFG) grant Hardening the Hammer (NI 491/14-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmin Christian Blanchette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Becker, H., Blanchette, J.C., Waldmann, U., Wand, D. (2017). A Transfinite Knuth–Bendix Order for Lambda-Free Higher-Order Terms. In: de Moura, L. (eds) Automated Deduction – CADE 26. CADE 2017. Lecture Notes in Computer Science(), vol 10395. Springer, Cham. https://doi.org/10.1007/978-3-319-63046-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63046-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63045-8

  • Online ISBN: 978-3-319-63046-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics