Skip to main content

Vessels Fuel Consumption: A Data Analytics Perspective to Sustainability

  • Chapter
  • First Online:
Soft Computing for Sustainability Science

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 358))

Abstract

The shipping industry is today increasingly concerned with challenges related with sustainability. CO\(_2\) emissions from shipping, although they today contribute to less than 3% of the total anthropogenic emissions, are expected to rise in the future as a consequence of increased cargo volumes. On the other hand, for the 2 \(^\circ \)C climate goal to be achieved, emissions from shipping will be required to be reduced by as much as 80% by 2050. The power required to propel the ship through the water depends, among other parameters, on the trim of the vessel, i.e. on the difference between the ship’s draft in the fore and the aft of the ship. The optimisation of the trim can, therefore, lead to a reduction of the ship’s fuel consumption. Today, however, the trim is generally set to a fixed value depending on whether the ship is sailed in loaded or ballast conditions, based on results performed on model tests in basins. Nevertheless, the on-board monitoring systems, which produce a huge amount of historical data about the life of the vessels, lead to the application of state of the art data analytics techniques. The latter can be used to reduce the vessel consumption by means of optimising the vessel operational conditions. In this book chapter, we present the potential of data-driven based techniques for accurately predicting the influence of independent variables measured from the on board monitoring system and the fuel consumption of a specific case study vessel. In particular, we show that gray-box models (GBM) are able to combine the high prediction accuracy of black-box models (BBM) while reducing the amount of data required for training the model by adding a white-box model (WBM) component. The resulting GBM model is then used for optimising the trim of the vessel, suggesting that between 0.5 and 2.3% fuel savings can be obtained by appropriately trimming the ship, depending on the extent of the range for varying the trim.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The set \(\mathscr {T}_m\) must be a different set respect to \(\mathscr {D}_n\) which has been used to built the model \(\mathfrak {M}\) in the case of BBMs and GBMs [1].

  2. 2.

    Note that some techniques use ERM and then, in order to improve the performance of the method, a post processing approach is adopted (i.e. pruning for Decision Tree [59]).

References

  1. Anguita, D., Ghio, A., Oneto, L., Ridella, S.: In-sample and out-of-sample model selection and error estimation for support vector machines. IEEE Trans. Neural Netw.Learn. Syst. 23(9), 1390–1406 (2012)

    Article  Google Scholar 

  2. Armstrong, V.N.: Vessel optimisation for low carbon shipping. Ocean Eng. 73, 195–207 (2013)

    Article  Google Scholar 

  3. Baldi, F., Johnson, H., Gabrielii, C., Andersson, K.: Energy and exergy analysis of ship energy systems-the case study of a chemical tanker. In: 27th ECOS, International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (2014)

    Google Scholar 

  4. Basin., D.W.T.M., Todd, F.H.: Series 60 Methodical Experiments with Models of Single-Screw Merchant Ships. Washington (1964)

    Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  6. Buhaug, O., Corbett, J.J., Endersen, O., Eyring, V., Faber, J., Hanayama, S., Lee, D.S., Lee, D., Lindstad, H., Markowska, A.Z., Mjelde, A., Nilsen, J., Palsson, C., Winebrake, J.J., Wu, W., Yoshida, K.: Second IMO GHG study 2009. Technical reports, International Maritime Organization (IMO) (2009)

    Google Scholar 

  7. Chang, Y.W., Lin, C.J.: Feature ranking using linear svm. Causation Predict. Chall. Chall. Mach. Learn. 2, 47 (2008)

    Google Scholar 

  8. Coraddu, A., Figari, M., Savio, S., Villa, D., Orlandi, A.: Integration of seakeeping and powering computational techniques with meteo-marine forecasting data for in-service ship energy assessment. In: Developments in Maritime Transportation and Exploitation of Sea Resources (2013)

    Google Scholar 

  9. Coraddu, A., Gaggero, S., Figari, M., Villa, D.: A new approach in engine-propeller matching. In: Sustainable Maritime Transportation and Exploitation of Sea Resources, vol. 1, pp. 631–637. CRC Press —Taylor and Francis Group (2011)

    Google Scholar 

  10. Coraddu, A., Gualeni, P., Villa, D.: Investigation about wave profile effects on ship sability. IMAM 2011 international maritime association of the mediterranean - sustainable maritime transportation and exploration of the sea. Resources 1, 143–149 (2011)

    Google Scholar 

  11. Coraddu, A., Oneto, L., Baldi, F., Anguita, D.: A ship efficiency forecast based on sensors data collection: improving numerical models through data analytics. In: OCEANS (2015)

    Google Scholar 

  12. Coraddu, A., Oneto, L., Ghio, A., Savio, S., Anguita, D., Figari, M.: Machine learning approaches for improving condition-based maintenance of naval propulsion plants. Proceedings of the Institution of Mechanical Engineers, Part M: J. Eng. Marit. Environ. doi:10.1177/1475090214540874 (2014)

  13. Corbett, J.J., Koehler, H.W.: Updated emissions from ocean shipping. J. Geophys. Res. Atmos. 108(D20) (2003)

    Google Scholar 

  14. Cox, D.R.: Principles of Statistical Inference. Cambridge University Press (2006)

    Google Scholar 

  15. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Oher Krnel-Bsed Larning Mthods. Cambridge Uiversity Pess (2000)

    Google Scholar 

  16. De Mol, C., De Vito, E., Rosasco, L.: Elastic-net regularization in learning theory. J. Complex. 25(2), 201–230 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Deng, H., Runger, G., Tuv, E.: Bias of importance measures for multi-valued attributes and solutions. Artif.l Neural Netw. Mach. Learn. ICANN 2011, 293–300 (2011)

    Google Scholar 

  18. Devanney, J.: The impact of the energy efficiency design index on very large crude carrier design and CO 2 emissions. Ships Offshore Struct. 6(4), 355–368 (2011)

    Article  Google Scholar 

  19. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32(2), 407–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. European Commission: Integrating maritime transport emissions in the EU’s greenhouse gas reduction policies (2013)

    Google Scholar 

  21. Evans, J.R., Lindner, C.H.: Business analytics: the next frontier for decision sciences. Decis. Line 43(2), 4–6 (2012)

    Google Scholar 

  22. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer series in statistics Springer, Berlin (2001)

    MATH  Google Scholar 

  23. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1 (2010)

    Article  Google Scholar 

  24. Fumeo, E., Oneto, L., Anguita, D.: Condition based maintenance in railway transportation systems based on big data streaming analysis. In: INNS Conference on Big Data (2015)

    Google Scholar 

  25. García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 180(10), 2044–2064 (2010)

    Article  Google Scholar 

  26. Ghelardoni, L., Ghio, A., Anguita, D.: Energy load forecasting using empirical mode decomposition and support vector regression. IEEE Trans. Smart Grid 4(1), 549–556 (2013)

    Article  Google Scholar 

  27. Gieseke, F., Polsterer, K.L., Oancea, C.E., Igel, C.: Speedy greedy feature selection: better redshift estimation via massive parallelism. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (2014)

    Google Scholar 

  28. Good, P.: Permutation Tests: A Practical Guide To Resampling Methods For Testing Hypotheses. Springer Science & Business Media (2013)

    Google Scholar 

  29. Guldhammer, H., Harvald, S.A.: Ship Resistance: Effect of Form and Principal Dimensions. Akademisk Forlag (1974)

    Google Scholar 

  30. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  31. Györfi, L.: A Distribution-free Theory of Nonparametric Regression. Springer (2002)

    Google Scholar 

  32. Haas, P.J., Maglio, P.P., Selinger, P.G., Tan, W.C.: Data is dead... without what-if models. In: International Conference on Very Large Database (2011)

    Google Scholar 

  33. Hochkirch, K., Mallol, B.: On the importance of fullscale cfd simulations for ships. In: International Conference on Computer Applications and Information Technology in the Maritime Industries (2013)

    Google Scholar 

  34. Holtrop, J.: A statistical re-analysis of resistance and propulsion data. Int. Shipbuild. Prog. 31(363), 272–276 (1984)

    Google Scholar 

  35. Holtrop, J., Mennen, G.G.: An approximate power prediction method. Int. Shipbuild. Prog. 29, 166–171 (1982)

    Google Scholar 

  36. Hong, S.J.: Use of contextual information for feature ranking and discretization. IEEE Trans. Knowl. Data Eng. 9(5), 718–730 (1997)

    Article  Google Scholar 

  37. Howison, S.: Practical Applied Mathematics: Modelling, Analysis, Approximation. 38. Cambridge University Press (2005)

    Google Scholar 

  38. Iakovatos, M.N., Liarokapis, D.E., Tzabiras, G.D.: Experimental investigation of the trim influence on the resistance characteristics of five ship models. In: Developments in Maritime Transportation and Exploitation of Sea Resources—Proceedings of IMAM 2013, 15th International Congress of the International Maritime Association of the Mediterranean (2014)

    Google Scholar 

  39. Jafarzadeh, S., Utne, I.B.: A framework to bridge the energy efficiency gap in shipping. Energy 69, 603–612 (2014)

    Article  Google Scholar 

  40. Jardine, A.K., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20(7), 1483–1510 (2006)

    Article  Google Scholar 

  41. Josephson, J.R., Josephson, S.G.: AbductIve Inference: Computation, Philosophy, Technology. Cambridge University Press (1996)

    Google Scholar 

  42. Khor, Y.S., Xiao, Q.: CFD simulations of the effects of fouling and antifouling. Ocean Eng. 38(10), 1065–1079 (2011)

    Article  Google Scholar 

  43. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1), 273–324 (1997)

    Article  MATH  Google Scholar 

  44. Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence (1995)

    Google Scholar 

  45. LaValle, S., Lesser, E., Shockley, R., Hopkins, M.S., Kruschwitz, N.: Big data, analytics and the path from insights to value. In: MIT Sloan Management Review (2013)

    Google Scholar 

  46. Lee, J., Yoo, S., Choi, S., Kim, H., Hong, C., Seo, J.: Development and application of trim optimization and parametric study using an evaluation system (solution) based on the rans for improvement of eeoi. In: International Conference on Ocean, Offshore and Arctic Engineering (2014)

    Google Scholar 

  47. Lee, W.S., Bartlett, P.L., Williamson, R.C.: The importance of convexity in learning with squared loss. IEEE Trans. Inf. Theory 44(5), 1974–1980 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  48. Leifsson, L., Saevarsdottir, H., Sigurdsson, S., Vesteinsson, A.: Grey-box modeling of an ocean vessel for operational optimization. Simul. Model. Pract. Theory 16, 923–932 (2008)

    Article  Google Scholar 

  49. Lewis, E.V.: Principles of Naval Architecture. Society of Naval Architects (1988)

    Google Scholar 

  50. Lützen, M., Kristensen, H.: A model for prediction of propulsion power and emissions—tankers and bulk carriers. In: World Maritime Technology Conference (2012)

    Google Scholar 

  51. MacKay, D.J.C.: Information Theory, Inference and Learning Algorithms. Cambridge University Press (2003)

    Google Scholar 

  52. Maritime Knowledge Centre: International shipping facts and figures - Information resources on trade, safety, security, environment. Technical reports, IMO (2012)

    Google Scholar 

  53. Meinshausen, N., Bühlmann, P.: Stability selection. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 72(4), 417–473 (2010)

    Article  MathSciNet  Google Scholar 

  54. Moustafa, M.M., Yehia, W., Hussein, A.W.: Energy efficient operation of bulk carriers by trim optimization. In: International Conference on Ships and Shipping Research (2015)

    Google Scholar 

  55. Ng, A.Y.: Feature selection, l 1 vs. l 2 regularization, and rotational invariance. In: International Conference on Machine Learning (2004)

    Google Scholar 

  56. Oneto, L., Ghio, A., Ridella, S., Anguita, D.: Support vector machines and strictly positive definite kernel: the regularization hyperparameter is more important than the kernel hyperparameters. In: International Joint Conference on Neural Networks (2015)

    Google Scholar 

  57. Palmé, T., Breuhaus, P., Assadi, M., Klein, A., Kim, M.: New alstom monitoring tools leveraging artificial neural network technologies. In: Turbo Expo: Turbine Technical Conference and Exposition (2011)

    Google Scholar 

  58. Petersen, J.P., Winther, O., Jacobsen, D.J.: A machine-learning approach to predict main energy consumption under realistic operational conditions. Ship Tech. Res. 59(1), 64–72 (2012)

    Article  Google Scholar 

  59. Quinlan, J.R.: Simplifying decision trees. Int. J. Man-Mach. Stud. 27(3), 221–234 (1987)

    Article  Google Scholar 

  60. Reichel, M., Minchev, A., Larsen, N.: Trim optimisation—theory and practice. Int. J. Marine Navig. Saf. Sea Transp. 8(3), 387–392 (2014)

    Article  Google Scholar 

  61. Scholkopf, B.: The kernel trick for distances. In: NEural Information Processing Systems (2001)

    Google Scholar 

  62. Schölkopf, B., Herbrich, R., Smola, A.J.: A generalized representer theorem. In: CoMputational Learning Theory (2001)

    Google Scholar 

  63. Schultz, M.P., Bendick, J., Holm, E.R., Hertel, W.M.: Economic impact of biofouling on a naval surface ship. Biofouling 27(1), 87–98 (2011)

    Article  Google Scholar 

  64. Shao, W., Zhou, P., Thong, S.K.: Development of a novel forward dynamic programming method for weather routing. J. Mar. Sci. Tech. 17(2), 239–251 (2011)

    Article  Google Scholar 

  65. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press (2004)

    Google Scholar 

  66. Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: A sparse-group lasso. J. Comput. Graph. Stat. 22(2), 231–245 (2013)

    Article  MathSciNet  Google Scholar 

  67. Smith, T.W.P., Jalkanen, J.P., Anderson, B.A., Corbett, J.J., Faber, J., Hanayama, S., OKeeffe, E., Parker, S., Johansson, L., Aldous, L.: Third imo ghg study 2014. Technical report, International Maritime Organisation (2014)

    Google Scholar 

  68. Stewart, T.R., McMillan Jr, C.: Descriptive and prescriptive models for judgment and decision making: implications for knowledge engineering. In: Expert Judgment and Expert Systems (1987)

    Google Scholar 

  69. Stopford, M.: Maritime Economics. Routeledge, New York (2009)

    Book  Google Scholar 

  70. Sugumaran, V., Muralidharan, V., Ramachandran, K.: Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing. Mech. Syst. Signal Process. 21(2), 930–942 (2007)

    Article  Google Scholar 

  71. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Stat. Soc. Ser. B (Methodol.) pp. 267–288 (1996)

    Google Scholar 

  72. Tikhonov, A., Arsenin, V.Y.: Methods for solving ill-posed problems. Nauka, Moscow (1979)

    MATH  Google Scholar 

  73. UNCTAD: Review of maritime transport. Technical report, United Conference on Trade and Development (2012)

    Google Scholar 

  74. Vapnik, V.N.: Statistical Learning Theory. Wiley–Interscience (1998)

    Google Scholar 

  75. Von Karman, T., Gabrielli, G.: What price speed? specific power required for propulsion of vehicles. Mech. Eng. 72, 775–781 (1950)

    Google Scholar 

  76. Wang, H., Faber, J., Nelissen, D., Russell, B., St Amand, D.: Marginal Abatement Costs and Cost Effectiveness of Energy-Efficiency Measures. Technical report, Institute of Marine Engineering, Science and Technology (2010)

    Google Scholar 

  77. White, A.P., Liu, W.Z.: Technical note: bias in information-based measures in decision tree induction. Mach. Learn. 15(3), 321–329 (1994)

    MATH  Google Scholar 

  78. Widodo, A., Yang, B.S.: Support vector machine in machine condition monitoring and fault diagnosis. Mech. Syst. Signal Process. 21(6), 2560–2574 (2007)

    Article  Google Scholar 

  79. Yoon, H., Yang, K., Shahabi, C.: Feature subset selection and feature ranking for multivariate time series. IEEE Trans. Knowl. Data Eng. 17(9), 1186–1198 (2005)

    Article  Google Scholar 

  80. Young, D.M.: IterAtive Solution of Large Linear Systems. Dover Publications. Com (2003)

    Google Scholar 

  81. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc.: Ser. B (Stat. Method.) 67(2), 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  82. Zou, H., Hastie, T., Tibshirani, R.: On the degrees of freedom of the lasso. Ann. Stat 35(5), 2173–2192 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Coraddu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Coraddu, A., Oneto, L., Baldi, F., Anguita, D. (2018). Vessels Fuel Consumption: A Data Analytics Perspective to Sustainability. In: Cruz Corona, C. (eds) Soft Computing for Sustainability Science. Studies in Fuzziness and Soft Computing, vol 358. Springer, Cham. https://doi.org/10.1007/978-3-319-62359-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62359-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62358-0

  • Online ISBN: 978-3-319-62359-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics