Skip to main content

Part of the book series: Studies in Big Data ((SBD,volume 31))

Abstract

While big data analytics is considered as one of the most important paths to competitive advantage of today’s enterprises, data scientists spend a comparatively large amount of time in the data preparation and data integration phase of a big data project. This shows that data integration is still a major challenge in IT applications. Over the past two decades, the idea of using semantics for data integration has become increasingly crucial, and has received much attention in the AI, database, web, and data mining communities. Here, we focus on a specific paradigm for semantic data integration, called Ontology-Based Data Access (OBDA). The goal of this paper is to provide an overview of OBDA, pointing out both the techniques that are at the basis of the paradigm, and the main challenges that remain to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.dbta.com/.

  2. 2.

    As usual, we assume to deal with pre-interpreted data types, and thus we can harmlessly use \(\varvec{t}\) to denote both the values and the constants representing them.

  3. 3.

    In fact, if we restrict to \(\textit{DL-Lite}_{\!R} \), then UNA becomes immaterial and can be dropped, as done in OWL 2 QL.

  4. 4.

    In \(\mathcal {M}_{L}\), the sets of fresh function symbols introduced in each \(\tau (m)\) are pairwise disjoint.

  5. 5.

    https://docs.mongodb.com/manual/.

References

  1. S. Abiteboul, O. Duschka, Complexity of answering queries using materialized views, in Proceedings of the PODS (1998), pp. 254–265

    Google Scholar 

  2. S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases (Addison Wesley Publ. Co., Reading, 1995)

    MATH  Google Scholar 

  3. A. Ahmeti, D. Calvanese, A. Polleres, V. Savenkov, Handling inconsistencies due to class disjointness in sparql updates, in Proceedings of the ESWC. Lecture Notes in Computer Science, vol. 9678 (Springer, Berlin, 2016), pp. 387–404

    Google Scholar 

  4. D. Allemang, J. Hendler, Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL (Elsevier, Amsterdam, 2011)

    Google Scholar 

  5. N. Antonioli, F. Castanò, S. Coletta, S. Grossi, D. Lembo, M. Lenzerini, A. Poggi, E. Virardi, and P. Castracane. Ontology-based data management for the italian public debt, in Proceedings of the FOIS (2014), pp. 372–385

    Google Scholar 

  6. A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev, The DL-Lite family and relations. JAIR 36, 1–69 (2009)

    MathSciNet  MATH  Google Scholar 

  7. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P.F. Patel-Schneider (eds.), The Description Logic Handbook: Theory, Implementation and Applications, 2nd edn. (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  8. E. Botoeva, D. Calvanese, B. Cogrel, M. Rezk, G. Xiao, Obda beyond relational dbs: a study for mongodb, in Proceedings of the DL, CEUR, vol. 1577 (2016), http://ceur-ws.org

  9. F. Brasileiro, J.P.A. Almeida, V.A. Carvalho, G. Guizzardi, Expressive multi-level modeling for the semantic web, in Proceedings of the Part I, The Semantic Web - ISWC 2016 - 15th International Semantic Web Conference, Kobe, Japan, 17–21 October, 2016 (2016), pp. 53–69

    Google Scholar 

  10. D. Bursztyn, F. Goasdoué, I. Manolescu, Teaching an RDBMS about ontological constraints. PVLDB 9(12), 1161–1172 (2016)

    Google Scholar 

  11. A. Calì, G. Gottlob, T. Lukasiewicz, A general Datalog-based framework for tractable query answering over ontologies. J. Web Semant. 14, 57–83 (2012)

    Article  Google Scholar 

  12. D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk, M. Rodriguez-Muro, G. Xiao, Ontop: answering SPARQL queries over relational databases. Sem. Web J. 8(3), 471–487 (2017)

    Article  Google Scholar 

  13. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, R. Rosati, M. Ruzzi, Data integration through DL-Lite \(_{\cal{A}}\) ontologies, in Revised Selected Papers of the 3rd International Workshop on Semantics in Data and Knowledge Bases (SDKB 2008), vol. 4925, LNCS, ed. by K.-D. Schewe, B. Thalheim (Springer, Berlin, 2008), pp. 26–47

    Google Scholar 

  14. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and efficient query answering in description logics: the DL-Lite family. JAR 39(3), 385–429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Data complexity of query answering in description logics. AIJ 195, 335–360 (2013)

    MathSciNet  MATH  Google Scholar 

  16. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, Using OWL in data integration, in Semantic Web Information Management - A Model-Based Perspective (Springer, Berlin, 2009), pp. 397–424

    Google Scholar 

  17. D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati, Description logic framework for information integration, in Proceedings of the KR (1998), pp. 2–13

    Google Scholar 

  18. A. Chortaras, D. Trivela, G.B. Stamou, Optimized query rewriting for OWL 2 QL, in Proceedings of the CADE (2011), pp. 192–206

    Google Scholar 

  19. M. Console, M. Lenzerini, Data quality in ontology-based data access: the case of consistency, in Proceedings of the AAAI (2014), pp. 1020–1026

    Google Scholar 

  20. S. Das, S. Sundara, R. Cyganiak, R2RML: RDB to RDF mapping language. W3C Recommendation, W3C (2012), http://www.w3.org/TR/r2rml/

  21. G. De Giacomo, M. Lenzerini, A. Poggi, R. Rosati, On instance-level update and erasure in description logic ontologies. JLC Spec. Issue Ontol. Dyn. 19(5), 745–770 (2009)

    MathSciNet  MATH  Google Scholar 

  22. F. Di Pinto, G. De Giacomo, M. Lenzerini, R. Rosati, Ontology-based data access with dynamic TBoxes in DL-Lite, in Proceedings of the AAAI (2012)

    Google Scholar 

  23. F. Di Pinto, D. Lembo, M. Lenzerini, R. Mancini, A. Poggi, R. Rosati, M. Ruzzi, D.F. Savo, Optimizing query rewriting in ontology-based data access, in Proceedings of the EDBT (ACM Press, 2013), pp. 561–572

    Google Scholar 

  24. T. Eiter, M. Ortiz, M. Simkus, T.-K. Tran, G. Xiao, Query rewriting for Horn-SHIQ plus rules (AAAI Press, In Proc. of AAAI, 2012)

    Google Scholar 

  25. G. Gottlob, S. Kikot, R. Kontchakov, V.V. Podolskii, T. Schwentick, M. Zakharyaschev, The price of query rewriting in ontology-based data access. AIJ 213, 42–59 (2014)

    MathSciNet  MATH  Google Scholar 

  26. M. Grüninger, Guide to the ontology of the process specification language, in Handbook of Ontologies, ed. by S. Staab, R. Studer (Springer, Berlin, 2003), pp. 575–592

    Google Scholar 

  27. V. Gutiérrez-Basulto, Y.A. Ibáñez-García, R. Kontchakov, E.V. Kostylev, Queries with negation and inequalities over lightweight ontologies. J. Web Semant. 35, 184–202 (2015)

    Article  Google Scholar 

  28. E. Kharlamov, D. Zheleznyakov, D. Calvanese, Capturing model-based ontology evolution at the instance level: the case of DL-Lite. JCSS 79(6), 835–872 (2013)

    MathSciNet  MATH  Google Scholar 

  29. R. Kontchakov, C. Lutz, D. Toman, F. Wolter, M. Zakharyaschev, The combined approach to ontology-based data access, in Proceedings of the IJCAI (2011), pp. 2656–2661

    Google Scholar 

  30. A. Leitsch, The Resolution Calculus (Springer, Berlin, 1997)

    Book  MATH  Google Scholar 

  31. D. Lembo, D. Pantaleone, V. Santarelli, D.F. Savo, Easy OWL drawing with the graphol visual ontology language, in Proceedings of the KR (2016), pp. 573–576

    Google Scholar 

  32. D. Lembo, D. Pantaleone, V. Santarelli, D.F. Savo, Eddy: a graphical editor for OWL 2 ontologies, in Proceedings of the IJCAI (2016), pp. 4252–4253

    Google Scholar 

  33. M. Lenzerini, Data integration: a theoretical perspective, in Proceedings of the PODS (2002), pp. 233–246

    Google Scholar 

  34. M. Lenzerini, L. Lepore, A. Poggi, Answering metaqueries over hi (OWL 2 QL) ontologies, in Proceedings of the IJCAI (2016), pp. 1174–1180

    Google Scholar 

  35. M. Lenzerini, L. Lepore, A. Poggi, A higher-order semantics for metaquerying in OWL 2 QL, in Proceedings of the KR (2016), pp. 577–580

    Google Scholar 

  36. A.Y. Levy, A.O. Mendelzon, Y. Sagiv, D. Srivastava, Answering queries using views, in Proceedings of the PODS (1995), pp. 95–104

    Google Scholar 

  37. B. Marnette, G. Mecca, P. Papotti, S. Raunich, D. Santoro, ++spicy: an opensource tool for second-generation schema mapping and data exchange. PVLDB 4(12), 1438–1441 (2011)

    Google Scholar 

  38. B. Motik, A. Fokoue, I. Horrocks, Z. Wu, C. Lutz, B. Cuenca Grau, OWL Web Ontology Language profiles. W3C Recommendation, W3C (2009), http://www.w3.org/TR/owl-profiles/

  39. M.A. Musen, The Protégé project: a look back and a look forward. AI Matters 1(4), 4–12 (2015)

    Article  Google Scholar 

  40. N.F. Noy, A. Doan, A.Y. Halevy, Semantic integration (editorial). AI Mag. 26(1), 7 (2005)

    Google Scholar 

  41. H. Pérez-Urbina, I. Horrocks, B. Motik, Efficient query answering for OWL 2, in Proceedings of the ISWC. LNCS, vol. 5823 (Springer, Berlin, 2009), pp. 489–504

    Google Scholar 

  42. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, Linking data to ontologies. J. Data Sem. X, 133–173 (2008)

    Google Scholar 

  43. L. Popa, Y. Velegrakis, R.J. Miller, M.A. Hernández, R. Fagin, Translating web data, in Proceedings of the VLDB (2002), pp. 598–609

    Google Scholar 

  44. E. Rahm, P.A. Bernstein, An online bibliography on schema evolution. SIGMOD Rec. 35(4), 30–31 (2006)

    Article  Google Scholar 

  45. M. Rodríguez-Muro, D. Calvanese, Dependencies: making ontology based data access work in practice, in Proceedings of the AMW. CEUR, vol. 749 (2011), http://ceur-ws.org

  46. R. Rosati, A. Almatelli, Improving query answering over DL-Lite ontologies, in Proceedings of the KR (2010), pp. 290–300

    Google Scholar 

  47. J.D. Ullman, Information integration using logical views, in Proceedings of the ICDT. LNCS, vol. 1186 (Springer, Berlin, 1997), pp. 19–40

    Google Scholar 

  48. F. Zablith, G. Antoniou, M. D’Aquin, G. Flouris, H. Kondylakis, E. Motta, D. Plexousakis, M. Sabou, Ontology evolution: a process-centric survey. Knowl. Eng. Rev. 30(1), 45–75 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Poggi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R. (2018). Using Ontologies for Semantic Data Integration. In: Flesca, S., Greco, S., Masciari, E., Saccà, D. (eds) A Comprehensive Guide Through the Italian Database Research Over the Last 25 Years. Studies in Big Data, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-61893-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61893-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61892-0

  • Online ISBN: 978-3-319-61893-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics