Skip to main content

Determination of Workspace Volume of Parallel Manipulators Using Monte Carlo Method

  • Conference paper
  • First Online:
Computational Kinematics

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 50))

Abstract

In this paper, we present a Monte Carlo simulation based method to determine the workspace of spatial parallel and hybrid manipulators. The method does not need the solution of the forward kinematics problem which is often difficult for spatial multi-degree-of-freedom parallel and hybrid manipulators. The method uses the solution of the inverse kinematics problem, which is often much simpler. The method can also readily incorporate joint limits and obtain the well-conditioned workspace. The approach is illustrated with a six-degree-of-freedom hybrid parallel manipulator which is a model for a human hand with three fingers. A typical human hand geometry and the range of motion at the joints are incorporated and the inverse kinematics equations for each finger is derived and used to obtain the volume of the hybrid parallel manipulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We have used a definition of the condition number which encompasses both linear and angular motion of the manipulator at the said position and orientation. The well conditioned-ness is ensured by restricting the condition number to be less than 100 at all times.

  2. 2.

    The CPU times are for Matlab\(^\circledR \) R2015a running on a Windows 7 PC with an Intel XEON quad core processor at 3.10 GHz and 16 GB of RAM.

  3. 3.

    Obtained by combining the linear and angular velocity Jacobian matrices by scaling the lengths by \(\{l_{11}+l_{12}+l_{13}\}\) as shown in Fig. 2b.

References

  1. Butterfaß, J., Grebenstein, M., Liu, H., Hirzinger, G.: DLR-Hand II: Next generation of a dextrous robot hand. In: 2001 Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2001, vol. 1, pp. 109–114. IEEE (2001)

    Google Scholar 

  2. Dai, J.S., Wang, D., Cui, L.: Orientation and workspace analysis of the multifingered metamorphic hand-metahand. IEEE Trans. Rob. 25(4), 942–947 (2009)

    Article  Google Scholar 

  3. Degeorges, R., Laporte, S., Pessis, E., Mitton, D., Goubier, J.N., Lavaste, F.: Rotations of three-joint fingers: a radiological study. Surg. Radiol. Anat. 26(5), 392–398 (2004)

    Google Scholar 

  4. Degeorges, R., Oberlin, C.: Measurement of three-joint-finger motions: reality or fancy? A three-dimensional anatomical approach. Surg. Radiol. Anat. 25(2), 105–112 (2003)

    Article  Google Scholar 

  5. Dunn, W.L., Shultis, J.K.: Exploring Monte Carlo Methods. Elsevier, Amsterdam (2011)

    MATH  Google Scholar 

  6. Ghosal, A.: Robotics: Fundamental Concepts and Analysis. Oxford University Press, Oxford (2006)

    Google Scholar 

  7. Gosselin, C.: Determination of the workspace of 6-DOF parallel manipulators. ASME J. Mech. Des. 112(3), 331–336 (1990)

    Article  Google Scholar 

  8. Haug, E.: Workspace analysis of multibody mechanical systems using continuation methods (1989)

    Google Scholar 

  9. Jacobsen, S., Iversen, E., Knutti, D., Johnson, R., Biggers, K.: Design of the Utah/MIT dextrous hand. In: 1986 Proceedings of the IEEE International Conference on Robotics and Automation, vol. 3, pp. 1520–1532. IEEE (1986)

    Google Scholar 

  10. Lin, J., Wu, Y., Huang, T.S.: Modeling the constraints of human hand motion. In: 2000 Proceedings of the Workshop on Human Motion, pp. 121–126. IEEE (2000)

    Google Scholar 

  11. Merlet, J.P.: Determination of the orientation workspace of parallel manipulators. J. Intell. Rob. Syst. 13(2), 143–160 (1995)

    Article  Google Scholar 

  12. Merlet, J.P.: A generic trajectory verifier for the motion planning of parallel robots. Trans. Am. Soc. Mech. Engg. 123(4), 510–515 (2001)

    Google Scholar 

  13. Merlet, J.P.: Parallel Robots, vol. 74. Springer Science & Business Media, Dordrecht (2012)

    MATH  Google Scholar 

  14. Nakamura, M., Miyawaki, C., Matsushita, N., Yagi, R., Handa, Y.: Analysis of voluntary finger movements during hand tasks by a motion analyzer. J. Electromyogr. Kinesiol. 8(5), 295–303 (1998)

    Article  Google Scholar 

  15. Salisbury, J.K., Craig, J.J.: Articulated hands: force control and kinematic issues. Int. J. Robot. Res. 1(1), 4–17 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashitava Ghosal .

Editor information

Editors and Affiliations

A Appendix I: Solution of the IK Problem of the Proposed Manipulator

A Appendix I: Solution of the IK Problem of the Proposed Manipulator

For the most general case, the position vector of the point \(S_1\) (see Fig. 2a) is given as the expressions of X, Y and Z below. From the expressions in Eqs. 2, 3 and 4 we obtain \(E_1=X^2+(Y+d)^2+(Z-h)^2\) as given in Eq. 5. Using the expressions for \(E_1\) and Z from Eqs. 4 and 5, in Sylvester’s dialytic method we can obtain the eliminant for \(\psi _1\) as a quartic function of the angular variable. The value of \(\theta _1\) may be obtained by solving the expression for \(-X+(Y+d)\) symbolically and the value of \(\phi _1\) is obtained by using terms from the expressions of Z and \(E_1\) as discussed in [6].

(2)
$$\begin{aligned}&Y=\frac{1}{2}( l_{{11}}\sin \left( \psi _{{1}}+\theta _{{1}} \right) +l_{{11}}\sin \left( \psi _{{1}}-\theta _{{1}} \right) +l_{{12}}\sin \left( \phi _{{1} }+\psi _{{1}}+\theta _{{1}} \right) \nonumber \\&\qquad -\,l_{{12}}\sin \left( \phi _{{1}}-\psi _{{1}}+\theta _{{1}} \right) +l_{{13}}\sin \left( { \gamma _i}+\phi _{{1}}+ \psi _{{1}}+\theta _{{1}} \right) -l_{{13}}\sin \left( { \gamma _i}+\phi _{{ 1}}-\psi _{{1}}+\theta _{{1}} \right) )\nonumber \\&\qquad -\,d \end{aligned}$$
(3)
$$\begin{aligned} Z=-\sin \left( \phi _{{1}}+{ \gamma _i}+\theta _{{1}} \right) l_{{13}}-\sin \left( \theta _{{1}}+\phi _{{1}} \right) l_{{12}}-\sin \left( \theta _{{ 1}} \right) l_{{11}}+h \end{aligned}$$
(4)
(5)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Chaudhury, A.N., Ghosal, A. (2018). Determination of Workspace Volume of Parallel Manipulators Using Monte Carlo Method. In: Zeghloul, S., Romdhane, L., Laribi, M. (eds) Computational Kinematics. Mechanisms and Machine Science, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-60867-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60867-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60866-2

  • Online ISBN: 978-3-319-60867-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics