Skip to main content

The Regulation and Function of Cohesin and Condensin in Mammalian Oocytes and Spermatocytes

  • Chapter
  • First Online:
Oocytes

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 63))

Abstract

Germ cells, such as oocytes and spermatocytes, produce haploid gametes by a special type of cell division called meiosis. The reduction of chromosome number is achieved in meiosis I, in which homologous chromosomes (homologs) are paired and recombined with their counterparts and finally segregated from each other. How meiotic chromosomes behave in a different manner from mitotic chromosomes has been a fascinating problem for cellular and developmental biology. Cohesin and condensin are multi-subunit protein complexes that play central roles in sister chromatid cohesion and chromosome condensation (also segregation), respectively. Recent studies investigating the expression and function of cohesin and condensin in mammalian germ cells greatly advance our understanding of the molecular mechanism underlying the meiotic chromosomal events. Furthermore, accumulating evidence suggests that reduction of cohesin during prophase I arrest in mammalian oocytes is one of the major causes for age-related chromosome segregation error. This review focuses on the regulation and functions of cohesins and condensins during mammalian meiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amanai M, Shoji S, Yoshida N, Brahmajosyula M, Perry AC (2006) Injection of mammalian metaphase II oocytes with short interfering RNAs to dissect meiotic and early mitotic events. Biol Reprod 75:891–898

    Article  CAS  PubMed  Google Scholar 

  • Bannister LA, Reinholdt LG, Munroe RJ, Schimenti JC (2004) Positional cloning and characterization of mouse mei8, a disrupted allelle of the meiotic cohesin Rec8. Genesis 40:184–194

    Article  CAS  PubMed  Google Scholar 

  • Biswas U, Hempel K, Llano E, Pendas A, Jessberger R (2016) Distinct roles of meiosis-specific cohesin complexes in mammalian spermatogenesis. PLoS Genet 12:e1006389

    Article  PubMed  PubMed Central  Google Scholar 

  • Boateng KA, Bellani MA, Gregoretti IV, Pratto F, Camerini-Otero RD (2013) Homologous pairing preceding SPO11-mediated double-strand breaks in mice. Dev Cell 24:196–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bomar J, Moreira P, Balise JJ, Collas P (2002) Differential regulation of maternal and paternal chromosome condensation in mitotic zygotes. J Cell Sci 115:2931–2940

    CAS  PubMed  Google Scholar 

  • Brieño-Enríquez MA, Moak SL, Toledo M, Filter JJ, Gray S, Barbero JL, Cohen PE, Holloway JK (2016) Cohesin removal along the chromosome arms during the first meiotic division depends on a NEK1-PP1g-WAPL axis in the mouse. Cell Rep 17:977–986

    Article  PubMed  PubMed Central  Google Scholar 

  • Burgoyne PS, Mahadevaiah SK, Turner JM (2009) The consequence of asynapsis form mammalian meiosis. Nat Rev Genet 10:207–216

    Article  CAS  PubMed  Google Scholar 

  • Burkhardt S, Borsos M, Szydlowska A, Godwin J, Williams SA, Cohen PE, Hirota T, Saitoh M, Tachibana-Kowalski K (2016) Chromosome cohesion established by Rec8-cohesin in fetal oocytes is maintained without detectable turnover in oocytes arrested for months in mice. Curr Biol 26:678–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang T, Duncan FE, Schindler K, Schultz RM, Lampson MA (2010) Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. Curr Biol 20:1522–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries FA, de Boer E, van den Bosch M, Baarends WM, Ooms M, Yuan L, Liu JG, van Zeeland AA, Heyting C, Pastin A (2005) Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev 19:1376–1389

    Article  PubMed  PubMed Central  Google Scholar 

  • Eijpe M, Heyting C, Gross B, Jessberger R (2000) Association of mammalian SMC1 and SMC3 proteins with meiotic chromosomes and synaptonemal complexes. J Cell Sci 113:673–682

    CAS  PubMed  Google Scholar 

  • Eijpe M, Offenberg H, Jessberger R, Revenkova E, Heyting C (2003) Meiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1beta and SMC3. J Cell Biol 160:657–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda T, Fukuda N, Agostinho A, Hernández-Hernández A, Kouznetsova A, Höög C (2014) STAG3-mediated stabilization of REC8 cohesin complexes promotes chromosome synapsis during meiosis. EMBO J 33:1243–1255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Cruz R, Brieño MA, Roig I, Grossmann M, Velilla E, Pujol A, Cabero L, Pessarrodona A, Barbero JL, Garcia Caldés M (2010) Dynamics of cohesin proteins REC8, STAG3, SMC1β and SMC3 are consistent with a role in sister chromatid cohesion during meiosis in human oocytes. Hum Reprod 25:2316–2327

    Article  CAS  PubMed  Google Scholar 

  • Gruber S, Haering CH, Nasmyth K (2003) Chromosomal cohesin forms a ring. Cell 112:765–777

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-Caballero C, Herrán Y, Sánchez-Martín MS, Suja JA, Barbero JL, Llano E, Pendáz AM (2011) Identification and molecular characterization of the mammalian kleisin RAD21L. Cell Cycle 10:1477–1487

    Article  PubMed  Google Scholar 

  • Gyuricza MR, Manheimer KB, Apte V, Krishnan B, Joyce EF, Mckee BD, McKim KS (2016) Dynamic and stable cohesins regulate synaptonemal complex assembly and chromosome segregation. Curr Biol 26:1688–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haering CH, Jessberger R (2012) Cohesin in determining chromosome architecture. Exp Cell Res 318:1386–1393

    Article  CAS  PubMed  Google Scholar 

  • Hartl TA, Smith HF, Bosco G (2008) Chromosome alignment and transvection are antagonized by condensin II. Science 322:1384–1387

    Article  CAS  PubMed  Google Scholar 

  • Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2:280–291

    Article  CAS  PubMed  Google Scholar 

  • Herbert M, Levasseur M, Homer H, Yallop K, Murdoch A, McDougall A (2003) Homologue disjunction in mouse oocytes requires proteolysis of securin and cyclin B1. Nat Cell Biol 5:1023–1025

    Article  CAS  PubMed  Google Scholar 

  • Herrán Y, Gutiérrez-Caballero C, Sánchez-Martín M, Hernández T, Viera A, Barbero JL, de Álava E, de Rooij DG, Suja JA, Llano E, Pendás AM (2011) The cohesin subunit RAD21L functions in meiotic synapsis and exhibits sexual dimorphism in fertility. EMBO J 30:3091–3105

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirano T (2016) Condensin-based chromosome organization from bacteria to vertebrates. Cell 164:847–857

    Article  CAS  PubMed  Google Scholar 

  • Hodges CA, Revenkova E, Jessberger R, Hassold TJ, Hunt PA (2005) SMC1beta-deficient female mice provide evidence that cohesins are a missing link in age-related nondisjunction. Nat Genet 37:1351–1355

    Article  CAS  PubMed  Google Scholar 

  • Houlard M, Godwin J, Metson J, Lee J, Hirano T, Nasmyth K (2015) Condensin confers the longitudinal rigidity of chromosomes. Nat Cell Biol 17:771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt P, Hassold T (2010) Female meiosis: coming unglued with age. Curr Biol 20:R699–R702

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro K, Kim J, Fujiyama-Nakamura S, Kato S, Watanabe Y (2011) A new meiosis-specific cohesin complex implicated in the cohesin code for homologous pairing. EMBO Rep 12:267–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishiguro K, Kim J, Shibuya H, Hernández-Hernández A, Suzuki A, Fukagawa T, Shioi G, Kiyonari H, Li XC, Schimenti J, Höög C, Watanabe Y (2014) Meiosis-specific cohesin mediates homolog recognition in mouse spermatocytes. Genes Dev 28:594–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin F, Hamada M, Malureanu L, Jeganathan KB, Zhou W, Morbeck DE, van Deursen JM (2010) Cdc20 is critical for meiosis I and fertility of female mice. PLoS Genet 6:e1001147

    Article  PubMed  PubMed Central  Google Scholar 

  • Keeney S (2001) Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol 52:1–53

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Ishiguro K-I, Nambu A, Akiyoshi B, Yokobayashi S, Kagami A, Ishiguro T, Pendas AM, Takeda N, Sakakibara Y, Kitajima T, Tanno Y, Sakuno T, Watanabe Y (2015) Meikin is a conserved regulator of meiosis-I-specific kinetochore function. Nature 512:466–471

    Google Scholar 

  • Klein F, Mahr P, Galova M, Buonomo SB, Michelis C, Nairz K, Nasmyth K (1999) A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98:91–103

    Article  CAS  PubMed  Google Scholar 

  • Kudo NR, Wassmann K, Anger M, Schuh M, Wirth KG, Xu H, Helmhart W, Kudo H, McKay M, Maro B, Ellenberg J, de Boer P et al (2006) Resolution of chiasmata in oocytes requires separase-mediated proteolysis. Cell 126:135–146

    Article  CAS  PubMed  Google Scholar 

  • Kudo NR, Anger M, Peters AHFM, Stemmann O, Theussi H-C, Helmhart W, Kudo H, Heyting C, Nasmyth K (2009) Role of cleavage by separase of the Rec8 kleisin subunit of cohesin during mammalian meiosis I. J Cell Sci 122:2686–2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroda M, Oikawa K, Ohbayashi T, Yoshida K, Yamada K, Mimura J, Matsuda Y, Fujii-Kuriyama Y, Mukai K (2005) A dioxin sensitive gene, mammalian WAPL, is implicated in spermatogenesis. FEBS Lett 579:167–172

    Article  CAS  PubMed  Google Scholar 

  • Lee J (2013) Roles of cohesin and condensin in chromosome dynamics during mammalian meiosis. J Reprod Dev 59:431–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Hirano T (2011) RAD21L, a novel cohesin subunit implicated in linking homologous chromosomes in mammalian meiosis. J Cell Biol 192:263–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Iwai T, Yokota T, Yamashita M (2003) Temporally and spatially selective loss of Rec8 protein from meiotic chromosomes during mammalian meiosis. J Cell Sci 116:2781–2790

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Okada K, Ogushi S, Miyano T, Miyake M, Yamashita M (2006) Loss of Rec8 from chromosome arm and centromere region is required for homologous chromosome separation and sister chromatid separation, respectively, in mammalian meiosis. Cell Cycle 5:1448–1455

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kitajima TS, Tanno Y, Yoshida K, Morita T, Miyano T, Miyake M, Watanabe Y (2008) Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nat Cell Biol 10:42–52

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Ogushi S, Saitou M, Hirano T (2011) Condensins I and II are essential for construction of bivalent chromosomes in mouse oocytes. Mol Biol Cell 22:3465–3477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Jin H, H-G Y (2014) Condensin suppresses recombination and regulates double-strand break processing at the repetitive ribosomal DNA array to ensure proper chromosome segregation during meiosis in budding yeast. Mol Biol Cell 25:2934–2947

    Article  PubMed  PubMed Central  Google Scholar 

  • Lisková L, Susor A, Pivonkova K, Saskova A, Karabinova P, Kubelka M (2010) Detection of condensin I and II in maturing pig oocytes. Reprod Fertil Dev 22:644–652

    Article  PubMed  Google Scholar 

  • Lister LM, Kouznetsova A, Hyslop LA, Kalleas D, Pace SL, Barel JC, Nathan A, Floros V, Adelfalk C, Watanabe Y, Jessberger R, Kirkwood TB, Höög C, Herbert M (2010) Age-related meiotic segregation errors in mammalian oocytes are preceded by depletion of cohesin and Sgo2. Curr Biol 20:1511–1521

    Article  CAS  PubMed  Google Scholar 

  • Llano E, Herran Y, Garcia-Tunon I, Gutierrez-Caballero C, de Alava E, Barbero JL, Schimenti J, de Rooij DG, Sanchez-Martin M, Pendas AM (2012) Meiotic cohesin complexes are essential for the formation of the axial element in mice. J Cell Biol 197:877–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin C-A, Murray JE, Carroll P, Leitch A, Mackenzie KJ, Halachev M, Fetit AE, Keith C, Bicknell LS, Fluteau A et al (2016) Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis. Genes Dev 30:2158–2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mets DG, Meyer BJ (2009) Condensins regulate meiotic DNA break distribution, thus crossover frequency, by controlling chromosome structure. Cell 139:73–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki WY, Orr-Weaver TL (1994) Sister-chromatid cohesion in mitosis and meiosis. Annu Rev Genet 28:167–187

    Article  CAS  PubMed  Google Scholar 

  • Morelli MA, Cohen PE (2005) Not all germ cells are created equal: aspects of sexual dimorphism in mammalian meiosis. Reproduction 130:761–781

    Article  CAS  PubMed  Google Scholar 

  • Nasmyth K (2011) Cohesin: a catenase with separate entry and exit gates? Nat Cell Biol 13:1170–1177

    Article  CAS  PubMed  Google Scholar 

  • Nasmyth K, Haering CH (2009) Cohesin: its roles and mechanisms. Annu Rev Genet 43:525–558

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama T, Ladurner R, Schmitz J, Kreidl E, Schleiffer A, Bhaskara V, Bando M, Shirahige K, Hyman AA, Mechtler K, Peters JM (2010) Sororin mediates sister chromatid cohesion by antagonizing Wapl. Cell 143:737–749

    Article  CAS  PubMed  Google Scholar 

  • Novak I, Wang H, Revenkova E, Jessberger R, Scherthan H, Hoog C (2008) Cohesin Smc1beta determines meiotic chromatin axis loop organization. J Cell Biol 180:83–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T (2003) Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115:109–121

    Article  CAS  PubMed  Google Scholar 

  • Page SL, Hawley RS (2004) The genetics and molecular biology of the synaptonemal complex. Annu Rev Cell Dev Biol 20:525–558

    Article  CAS  PubMed  Google Scholar 

  • Parra MT, Viera A, Gómez R, Page J, Benavente R, Santos JL, Rufas JS, Suja JA (2004) Involvement of the cohesin Rad21 and SCP3 in monopolar attachment of sister kinetochores during mouse meiosis I. J Cell Sci 117:1221–1234

    Article  CAS  PubMed  Google Scholar 

  • Pelttari J, Hoja M-R, Yuan L, Liu J-G, Brundell E, Moens P, Santucci-Darmnin S, Jessberger R, Barbero JL, Heyting C, Höög C (2001) A meiotic chromosomal core consisting of cohesin complex proteins recruits DNA recombination proteins and promotes synapsis in the absence of an axial element in mammalian meiotic cells. Mol Cell Biol 21:5667–5677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters JM, Tedeschi A, Schmitz J (2008) The cohesin complex and its roles in chromosome biology. Genes Dev 22:3089–3114

    Article  CAS  PubMed  Google Scholar 

  • Prieto I, Suja JA, Pezzi N, Kremer L, Martinez AC, Rufas JS, Barbero JL (2001) Mammalian STAG3 is a cohesin specific to sister chromatid arms in meiosis I. Nat Cell Biol 3:761–766

    Article  CAS  PubMed  Google Scholar 

  • Prieto I, Pezzi N, Buesa J, Kremer L, Barthelemy I, Carreiro C, Roncal F, Martínez A, Gómez L, Fernández R, Martínez A, Barbero J (2002) STAG2 and Rad21 mammalian mitotic cohesins are implicated in meiosis. EMBO Rep 3:543–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revenkova E, Eijpe M, Heyting C, Gross B, Jessberger R (2001) Novel meiosis-specific isoform of mammalian SMC1. Mol Cell Biol 21:6984–6998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revenkova E, Eijpe M, Heyting C, Hodges CA, Hunt PA, Liebe B, Scherthan H, Jessberger R (2004) Cohesin SMC1 beta is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat Cell Biol 6:555–562

    Article  CAS  PubMed  Google Scholar 

  • Revenkova E, Herrmann K, Adelfalk C, Jessberger R (2010) Oocyte cohesin expression restricted to predictyate stages provides full fertility and prevents aneuploidy. Curr Biol 20:1529–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rong M, Matsuda A, Hiraoka Y, Lee J (2016) Meiotic cohesin subunits RAD21L and REC8 are positioned at distinct regions between lateral elements and transverse filaments in the synaptonemal complex of mouse spermatocytes. J Reprod Dev 62:623–630

    Article  PubMed  PubMed Central  Google Scholar 

  • Rong M, Miyauchi S, Lee J (2017) Ectopic expression of meiotic cohesin RAD21L promotes adjacency of homologous chromosomes in somatic cells. J Reprod Dev. doi:10.1262/jrd.2016-171

  • Sakakibara Y, Hashimoto S, Nakaoka Y, Kouznetsova A, Höög C, Kitajima TS (2015) Bivalent separation into univalents precedes age-related meiosis I errors in oocytes. Nat Commun 6:7550

    Article  PubMed  PubMed Central  Google Scholar 

  • Santucci-Darmanin S, Walpita D, Lespinasse F, Desnuelle C, Ashley T, Paquis-Flucklinger V (2000) MSH4 acts in conjunction with MLH1 during mammalian meiosis. FASEB J 14:1539–1547

    Article  CAS  PubMed  Google Scholar 

  • Shintomi K, Hirano T (2009) Releasing cohein from chromosome arms in early mitosis: opposing actions of Wapl-Pds5 and Sgo1. Genes Dev 23:2224–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SJ, Osman K, Franklin CH (2014) The condensin complexes play distinct roles to ensure normal chromosome morphogenesis during meiotic division in Arabidopsis. Plant J 80:255–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suja JA, Barbero JL (2009) Cohesin complexes and sister chromatid cohesion in mammalian meiosis. Genome Dyn 5:94–116

    Article  CAS  PubMed  Google Scholar 

  • Tachibana-Konwalski K, Godwin J, van der Weyden L, Champion L, Kudo NR, Adams DJ, Nasmyth K (2010) Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes. Genes Dev 24:2505–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tachibana-Konwalski K, Godwin J, Borsos M, Rattani A, Adams DJ, Nasmyth K (2013) Spindle assembly checkpoint of oocytes depends on a kinetochore structure determined by cohesin in meiosis I. Curr Biol 23:2534–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terret ME, Wassmann K, Waizenegger I, Maro B, Peters JM, Verlhac MH (2003) The meiosis I-to-meiosis II transition in mouse oocytes requires separase activity. Curr Biol 13:1797–1802

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumi M, Fujiwara R, Nishizawa H, Ito M, Kogo H, Inagaki H, Ohye T, Kato T, Fujii T, Kurahashi H (2014) Age-related decrease of meiotic cohesins in human oocytes. PLoS One 9:e96710

    Article  PubMed  PubMed Central  Google Scholar 

  • Uhlmann F, Nasmyth K (1998) Cohesion between sister chromatids must be established during DNA replication. Curr Biol 8:1095–1101

    Article  CAS  PubMed  Google Scholar 

  • Uhlmann F, Wernic D, Poupart MA, Koonin EV, Nasmyth K (2000) Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103:375–386

    Article  CAS  PubMed  Google Scholar 

  • Viera A, Gomez R, Parra MT, Schmiesing JA, Yokomori K, Rufas JS, Suja JA (2007) Condensin I reveals new insights on mouse meiotic chromosome structure and dynamics. PLoS One 2:e783

    Article  PubMed  PubMed Central  Google Scholar 

  • Waizenegger IC, Hauf S, Meinke A, Peters JM (2000) Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103:399–410

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Nurse P (1999) Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 29:461–464

    Article  Google Scholar 

  • Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T et al (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451:796–801

    Article  CAS  PubMed  Google Scholar 

  • Winters T, McNicoll F, Jessberger R (2014) Meiotic cohesin STAG3 is required for chromosome axis formation and sister chromatid cohesion. EMBO J 33:1256–1270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wood AJ, Severson AF, Meyer BJ (2010) Condensin and cohesin complexity: the expanding repertoire of functions. Nat Rev Genet 11:391–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Beasley M, Verschoor S, Inselman A, Handel MA, Mckay MJ (2004) A new role for the mitotic RAD21/SCC1 cohesin in meiotic chromosome cohesion and segregation in the mouse. EMBO Rep 5:378–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Beasley MD, Warren WD, van der Horst GT, McKay MJ (2005) Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev Cell 8:949–961

    Article  CAS  PubMed  Google Scholar 

  • Yu H (2007) Cdc20: a WD40 activator for a cell cycle degradation machine. Mol Cell 27:3–16

    Article  CAS  PubMed  Google Scholar 

  • Yu HG, Koshland DE (2003) Meiotic condensin is required for proper chromosome compaction, SC assembly, and resolution of recombination-dependent chromosome linkages. J Cell Biol 163:937–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jibak Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lee, J. (2017). The Regulation and Function of Cohesin and Condensin in Mammalian Oocytes and Spermatocytes. In: Kloc, M. (eds) Oocytes. Results and Problems in Cell Differentiation, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-60855-6_15

Download citation

Publish with us

Policies and ethics