Skip to main content

Approximation and stability analysis of some kinds of switched fractional linear systems

  • Conference paper
  • First Online:
Trends in Advanced Intelligent Control, Optimization and Automation (KKA 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 577))

Included in the following conference series:

Abstract

Many systems appearing in practice exhibit a hybrid nature, that is, a coupling between continuous dynamics and discrete events. Special cases of such systems are those in which the linear subsystems are switched according to time or according to state and/or input. In the paper a method for approximation of some kinds of switched fractional linear systems is proposed and their stability is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Busłowicz M.: Robust stability of positive discrete-time linear systems of fractional order. Bulletin of Polish Academy of Sciences, Technical Sciences, Vol. 58, No. 4, pp. 567–572, 2010.

    Google Scholar 

  • 2. Busłowicz M.: Stability of state-space models of linear continuous-time fractional order systems. Acta Mechanica et Automatica, Vol. 5, No. 2, pp. 15–22, 2011.

    Google Scholar 

  • 3. Busłowicz M., Ruszewski A.: Robust stability check of fractional discrete-time linear systems with interval uncertainties. In: Latawiec K., Łukaniszyn M., Stanisławski R. (eds.): Advances in Modelling and Control of Non-integer Order Systems. LN in Electrical Engineering 320, Springer, pp. 199–208, 2014.

    Google Scholar 

  • 4. Chen Y. Q., Ahnand H.S., Podlubny I.: Robust stability check of fractional order linear time invariant systems with interval uncertainties. Signal Processing, Vol. 86, No. 1, pp. 2611–2618, 2006.

    Google Scholar 

  • 5. Domek S.: Piecewise Affine Representation of Discrete in Time, Non-integer Order Systems. In: Mitkowski W., Kacprzyk J., Baranowski J. (eds.): Advances in the Theory and Applications of Non-integer Order Systems. LN in Electrical Engineering 257, Springer, pp. 149–160, 2013.

    Google Scholar 

  • 6. Domek S.: Fractional-order differential calculus in model predictive control. West Pomeranian University of Technology Academic Press, Szczecin, 2013.

    Google Scholar 

  • 7. Domek S.: Switched state model predictive control of fractional-order nonlinear discrete-time systems. In: Pisano A., Caponetto R. (eds.): Advances in Fractional Order Control and Estimation, Asian J. Control, Special Issue, Vol. 15, No. 3, pp. 658–668, 2013.

    Google Scholar 

  • 8. Dzieliński A., Sierociuk D.: Stability of discrete fractional order state-space systems. Journal of Vibration and Control, Vol. 14, No. 9–10, pp. 1543–1556, 2008.

    Google Scholar 

  • 9. Fang L., Lin H., Antsaklis P. J.: Stabilization and performance analysis for a class of switched systems. In: Proc. 43rd IEEE Conf. Decision Control, Atlantis, pp. 1179–1180, 2004.

    Google Scholar 

  • 10. Geyer T., Torrisi F., Morari M.: Optimal complexity reduction of polyhedral piecewise affine systems. Automatica, Vol. 44, No. 7, pp. 1728–1740, 2008.

    Google Scholar 

  • 11. Kaczorek T.: New stability tests of positive standard and fractional linear systems. Circuits and Systems, Vol. 2, No. 4, pp. 261–268, 2011.

    Google Scholar 

  • 12. Kaczorek T.: Selected Problems of Fractional Systems Theory. Springer, Berlin, 2011.

    Google Scholar 

  • 13. Lin H., Antsaklis P. J.: Switching Stabilization and L2 Gain Performance Controller Synthesis for Discrete-Time Switched Linear Systems. Proc. 45th IEEE Conference on Decision & Control, San Diego, CA, USA, pp. 2673–2678, 2006.

    Google Scholar 

  • 14. Lin H., Antsaklis P. J.: Stability and stabilizability of switched linear systems: A survey of recent results. IEEE Trans. on Automatic Control, Vol. 54, No. 2, pp. 308–322, 2009.

    Google Scholar 

  • 15. Macias M., Sierociuk D.: An alternative recursive fractional variable-order derivative definition and its analog validation., Proc. Inter. Conf. on Fractional Differentiation and its Applications (ICFDA), Catania, pp. 1–6, 2014.

    Google Scholar 

  • 16. Mäkilä P. M., Partington J. R.: On linear models for nonlinear systems. Automatica, Vol. 39, pp. 1–13, 2003.

    Google Scholar 

  • 17. Monje C. A., Chen Y. Q., Vinagre B. M., Xue D., Feliu V.: Fractional order systems and controls. Springer-Verlag, London, 2010.

    Google Scholar 

  • 18. Moze M., Sabatier J., and Oustaloup A.: LMI characterization of fractional systems stability. In: Sabatier J., Agrawal O. P., Tenreiro Machado J. A. (eds.): Advances in Fractional Calculus: Theoretical developments and applications in physics and engineering, Springer, pp. 419–434, 2007.

    Google Scholar 

  • 19. Ostalczyk P.: The non-integer difference of the discrete-time function and its application to the control system synthesis. Int. J. Syst. Sci., vol. 31, no. 12, pp. 1551–1561, 2000.

    Google Scholar 

  • 20. Petrás I.: Fractional Derivatives, Fractional Integrals, and Fractional Differential Equations in Matlab. In: Assi A. (ed.): Engineering Education and Research Using MATLAB, InTech, Rijeka, Shanghai 2011.

    Google Scholar 

  • 21. Podlubny I.: Fractional Differential Equations, San Diego, Academic Press, 1999.

    Google Scholar 

  • 22. Shevitz D., Paden B.: Lapunov stability theory of nonsmooth systems. IEEE Trans. on Automatic Control, Vol. 39, No. 9, pp. 1910–1914, 1994.

    Google Scholar 

  • 23. Stanisławski R.: Advances in modeling of fractional difference systems − new accuracy, stability and computational results. Oficyna Wydawnicza Politechniki Opolskiej, Opole, 2013.

    Google Scholar 

  • 24. Stanisławski R., Latawiec K. L., Łukaniszyn M., Gałek M.: Time-domain approximations to the Grünwald-Letnikov difference with application to modeling of fractional-order state space systems. Proc. 20th Int. Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 579–584, 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Domek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Domek, S. (2017). Approximation and stability analysis of some kinds of switched fractional linear systems. In: Mitkowski, W., Kacprzyk, J., Oprzędkiewicz, K., Skruch, P. (eds) Trends in Advanced Intelligent Control, Optimization and Automation. KKA 2017. Advances in Intelligent Systems and Computing, vol 577. Springer, Cham. https://doi.org/10.1007/978-3-319-60699-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60699-6_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60698-9

  • Online ISBN: 978-3-319-60699-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics