Skip to main content

Synthesis and Characterization of a Novel Bio Nanosponge Filter (pMWCNT-CD/TiO2-Ag) as Potential Adsorbent for Water Purification

  • Conference paper
  • First Online:
Emerging Trends in Chemical Sciences (ICPAC 2016)

Abstract

This study reports the synthesis and characterization of a novel bio nanosponge filter for applications in water treatment. Firstly the oxidized multiwalled carbon nanotubes (MWCNTs) were chlorinated using oxalyl chloride and then phosphorylated via an amidation reaction. The phosphorylated carbon nanotube (pMWCNT) obtained was polymerized with β-cyclodextrin (βCD) using hexamethylene diisocyanate (HMDI) as a linker. The resulting polymer (pMWCNT-βCD) was decorated by a sol-gel method with TiO2 and Ag nanoparticles to obtain a biopolymer nanocomposite, pMWCNT-βCD/TiO2-Ag. For a better evaluation of the target material, CD polymer and pMWCNT-CD polymer were also synthesized for comparison purposes. Fourier-transform infrared (FTIR) spectroscopy was used to confirm the presence of functional groups on the surface of modified MWCNTs and the polymerization reaction. Laser Raman spectroscopy analysis showed the presence of MWCNT, CD and the anatase crystalline form of TiO2 in the nanocomposite. Preliminary adsorption studies were also conducted in order to test the capability of the new bio nanosponge filter to remove metal ions pollutants from synthetic wastewater solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 2014:1–25

    Article  Google Scholar 

  2. Mamba G, Mbianda XY, Govender PP (2013) Phosphorylated multiwalled carbon nanotube-cyclodextrin polymer: synthesis, characterisation and potential application in water purification. Carbohydr Polym 98:470–476

    Article  CAS  Google Scholar 

  3. Mhlanga SD, Mamba BB, Krause RW, Malefetse TJ (2007) Removal of organic contaminants from water using nanosponge cyclodextrin polyurethanes. J Chem Technol Biotechnol 82:382–388

    Article  CAS  Google Scholar 

  4. Nitalikar MM, Sakarkar DM, Jain PV (2012) The cyclodextrins: a review. J Curr Pharm Res 10:1–6

    Google Scholar 

  5. Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046

    Article  Google Scholar 

  6. Krause RW, Mamba BB, Bambo FM, Malefetse TJ (2010) Cyclodextrin polymers: synthesis and application in water treatment. In: Hu J (ed) Cyclodextrins chemistry and physics. Transworld Research Network, Trivandrum, pp 1–25

    Google Scholar 

  7. Salipira KL, Krause RW, Mamba BB et al (2008) Cyclodextrin polyurethanes polymerized with multi-walled carbon nanotubes: synthesis and characterization. Mater Chem Phys 111:218–224

    Article  CAS  Google Scholar 

  8. Salipira KL, Mamba BB, Krause RW et al (2008) Cyclodextrin polyurethanes polymerised with carbon nanotubes for the removal of organic pollutants in water. Water SA 34:113–118

    CAS  Google Scholar 

  9. Mamba G, Mbianda XY, Govender PP et al (2010) Application of multiwalled carbon nanotube-cyclodextrin polymers in the removal of heavy metals from water. J Appl Sci 10:940–949

    Article  CAS  Google Scholar 

  10. Mamba BB, Krause RW, Malefetse TJ, Nxumalo EN (2007) Monofunctionalized cyclodextrin polymers for the removal of organic pollutants from water. Environ Chem Lett 5:79–84

    Article  CAS  Google Scholar 

  11. Sithole SP, Mamba BB, Krause RW, Mapolie SW Cyclodextrin dendrimers containing nanocatalysts for the removal of natural organic matter (nom) and other micropollutants from water: a short review. Water Inst SA:1–9

    Google Scholar 

  12. Mamba BB, Krause RW, Dlamini N The synthesis and application of cyclodextrin polyurethanes containing nanoparticles in water treatment. http://www.waternetonline.ihe.nl/downloads/uploads/symposium/zambia-2007/Water for People/Krause.pdf. Accessed 9 Aug 2014

  13. Jeon IY, Baek JB (2010) Nanocomposites derived from polymers and inorganic nanoparticles. Materials (Basel) 3:3654–3674

    Article  CAS  Google Scholar 

  14. Perumal S, Sambandam GC, Prabu MK, Ananthakumar S (2014) Synthesis and characterization studies of nano TiO2 prepared via sol-gel method. Int J Res Eng Technol 3:651–657

    Google Scholar 

  15. Burghard M, Balasubramanian K (2005) Chemically functionalized carbon nanotubes. Small 1:180–192

    Article  Google Scholar 

  16. Motchelaho MAM, Xiong H, Moyo M et al (2011) Effect of acid treatment on the surface of multiwalled carbon nanotubes prepared from Fe-Co supported on CaCO3: correlation with Fischer-Tropsch catalyst activity. J Mol Catal A Chem 335:189–198

    Article  CAS  Google Scholar 

  17. Mpendulo NT (2006) Phosphorylation of multiwalled carbon nanotubes. University of Johannesburg

    Google Scholar 

  18. Danilich MJ, Burton DJ, Marchant RE (1995) Infrared study of perfluorovinylphosphoric acid, perfluoroallylphosphonic acid, and pentafluoroallyldiethylphosphonate. Vib Spectrosc 9:229–234

    Google Scholar 

  19. Shrestha S, Choi WS, Song W et al (2010) Preparation and field emission properties of Er-decorated multi-walled carbon nanotubes. Carbon N Y 48:54–59

    Article  CAS  Google Scholar 

  20. Ramesh BP, Blau WJ, Tyagi PK et al (2006) Thermogravimetric analysis of cobalt-filled carbon nanotubes deposited by chemical vapour deposition. Thin Solid Films 494:128–132

    Article  CAS  Google Scholar 

  21. Nyamukamba P, Greyling C, Tichagwa L (2011) Preparation of photocatalytic TiO2 nanoparticles immobilized on carbon nanofibres for water purification. University of Fort Hare

    Google Scholar 

  22. Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube-TiO2 composites. Adv Mater 21:2233–2239

    Article  CAS  Google Scholar 

  23. Leudjo A, Pillay K, Yangkou X (2017) Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: a review. Carbohydr Polym 159:94–107

    Article  Google Scholar 

  24. Leudjo Taka A (2014) Metal-decorated carbon nanostructures for photocatalytic reduction of CO2. University of Johannesburg

    Google Scholar 

  25. Xia XH, Jiia ZH, Yu Y et al (2007) Preparation of multiwalled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon 45:717–721

    Article  CAS  Google Scholar 

  26. Wu YC, Liu XL, Ye M, Xie T (2008) Preparation and properties of carbon nanotube-TiO2 nanocomposites. Acta Physico-Chimica Sin 24:97–102

    Google Scholar 

  27. Yen CY, Lin YF, Hung CH, et al (2008) The effects of synthesis procedures on the morphology and photocatalytic activity of multiwalled carbon nanotubes/TiO(2) nanocomposites. Nanotechnology 19:45604

    Google Scholar 

  28. Zhu J, Zhang J, Chen F, et al (2005) High activity TiO2 photocatalysts prepared by a modified sol-gel method: characterization and their photocatalytic activity for the degradation of XRG and X-GL. Top Catal 35:261–268

    Google Scholar 

  29. Raoov M, Mohamad S, Abas MR (2014) Synthesis and characterization of β-cyclodextrin functionalized ionic liquid polymer as a macroporous material for the removal of phenols and As(V). Int J Mol Sci 15:100–119

    Google Scholar 

  30. Simelane S (2011) Phosphorylated nanoporous β-cyclodextrin polymers: synthesis, characterization and their application in water purification. University of Johannesburg

    Google Scholar 

  31. Kuvarega AT, Krause RWM, Mamba BB (2014) Multiwalled carbon nanotubes decorated with nitrogen, palladium co-doped TiO2 (MWCNT/n, Pd co-doped TiO2) for visible light photocatalytic degradation of eosin yellow in water. Nanotechnol Sustain Dev First Ed 2:73–88

    Google Scholar 

  32. Gotić M, Ivanda M, Popović S, et al (1997) Raman investigation of nanosized TiO2. J Raman Spectrosc 28:555–558

    Google Scholar 

  33. Felske A, Plieth WJ (1989) Raman spectroscopy of titanium dioxide layers. Electrochim Acta 34:75–77

    Google Scholar 

  34. Tompsett GA, Bowmaker GA, Cooney RP, et al (1995) The Raman spectrum of brookite, TiO2 (Pbca, Z=8). J Raman Spectrosc 26:57–62

    Google Scholar 

  35. Porto SPS, Fleury PA, Damen TC (1967) Raman spectra of TiO2, MgF2 ZnF2, FeF2 and MnF2. Phys Rev 154:522

    Google Scholar 

  36. Hara Y, Nicol M (1979) Raman spectra and the structure of rutile at high pressures. Phys status solidi 94:317–322

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Research Foundation (NRF), the University of Johannesburg and Water Research Commission (WRC) for the financial supports and the facilities offered. DST/NRF Centre of Excellence in Strong Materials at the University of the Witwatersrand is also appreciated for the Raman & BET surface area analyses, and above all the God Almighty.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anny Leudjo Taka or Xavier Yangkou Mbianda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Leudjo Taka, A., Pillay, K., Mbianda, X.Y. (2018). Synthesis and Characterization of a Novel Bio Nanosponge Filter (pMWCNT-CD/TiO2-Ag) as Potential Adsorbent for Water Purification. In: Ramasami, P., Gupta Bhowon, M., Jhaumeer Laulloo, S., Li Kam Wah, H. (eds) Emerging Trends in Chemical Sciences. ICPAC 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-60408-4_18

Download citation

Publish with us

Policies and ethics