Skip to main content

Maternal Obesity and Implications for Fetal Programming

  • Chapter
  • First Online:
Diet, Nutrition, and Fetal Programming

Part of the book series: Nutrition and Health ((NH))

Abstract

Obesity in pregnant women is now reported to be between 20% and 34%, impacting individuals of differing ages, races, ethnicities and socioeconomic status worldwide. Chronic, low-grade inflammation and insulin resistance are hallmarks of a normal pregnancy, but are exacerbated by maternal obesity, leading to further increases in inflammatory cytokines, insulin and lipids. Due to the central role of the placenta in regulating nutrient flow from mother to fetus, abnormal changes in the maternal metabolic milieu resulting from maternal obesity (MO) may alter placental vascularity, metabolism and/or nutrient transport function leading to alterations in fetal growth, metabolism and organ development, as described for other adverse obstetrics outcomes. Maternal obesity is linked to an increased incidence of offspring metabolic dysregulation including obesity, hyperglycemia, hyperinsulinemia, hyperperlipidemia, type 2 diabetes and cardiovascular disease, a cadre of symptoms referred to as the metabolic syndrome. Strong evidence suggests that these changes are due to gene environment interactions in utero which produce transient and/or stable epigenetically-induced changes in gene expression. Further, the persistence of these abnormalities into the postnatal period, suggests that the developmental changes may have permanent effects that alter metabolic outcomes, linking maternal obesity to long term risk for metabolic diseases in the next generation. Life-course studies in human infants born to obese mothers, particularly at the molecular and cellular level in tissues relevant to metabolic syndrome are lacking. It is thus crucial that well characterized and relevant animal models of diet-induced MO be utilized in obtain information on the specific molecular and biochemical mechanisms involved in postnatal obesity and metabolic dysregulation in offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global regional and national prevelance of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the global burden of disease study 2014. Lancet. 2014;384:766–81.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Callaway LK, Prins JB, Chamng AM, McIntyre HD. The prevalence and impact of overweight and obesity in the Australian obstetric population. Med J Aust. 2006;184(2):56–9.

    PubMed  Google Scholar 

  3. Visscher TLS, Seidell JC. The public health impact of obesity. Annu Rev Public Health. 2001;22:355–75.

    Article  CAS  PubMed  Google Scholar 

  4. Taylor VH, Forhan M, Vigod SN, McIntyre RS, Morrison KM. The impact of obesity on quality of life. Best Pract Res Clin Endocrinol Metab. 2013;27:139–46.

    Article  PubMed  Google Scholar 

  5. Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115:e290–6.

    Article  PubMed  Google Scholar 

  6. Catalano PM, Farrell K, Thomas A, Huston-Presley L, Mencin P, de Mouzon SH, et al. Perinatal risk factors for childhood obesity and metabolic dysregulation. Am J Clin Nutr. 2009;90:1303–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Catalano PM. Management of obesity in pregnancy. Obstet Gynecol. 2007;109:419–33.

    Article  PubMed  Google Scholar 

  8. Surkin PJ, Hsieh CC, Johansson AL, Diceman PW, Cnattingius S. Reasons for increasing trends in large for gestational age births. Obstet Gynecol. 2004;104:720–6.

    Article  Google Scholar 

  9. Ananth CV, Wen SW. Trends in fetal growth among singleton gestation in the United States and Canada. Semin Perinatol. 2002;26(4):260–7.

    Article  PubMed  Google Scholar 

  10. Sewell MF, Huston-Presley L, Super DM, Catalano PM. Increased neonatal fat mass, is associated with maternal obesity. AJOG. 2006;195:1100–3.

    Article  Google Scholar 

  11. Gottlieb AG, Galan HL. Shoulder dystocia: an update. Obstet Gynecol Clin N Am. 2007;34:501–31.

    Article  Google Scholar 

  12. Catalano P, Presley L, Minium J, Hauguel-de MS. Fetuses of obese mothers develop insulin resistance in utero. Diabetes Care. 2009;32:1076–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Whitaker RC. Predicting preschooler obesity at birth: the role of maternal obesity in early pregnancy. Pediatrics. 2004;114:e29–36.

    Article  PubMed  Google Scholar 

  14. Mingrone G, Manco M, Mora ME, Guidone C, Laconelli A, Gniuli D, et al. Influence of maternal obesity on insulin sensitivity and secretion of the offspring. Diabetes Care. 2008;31:1872–6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gillman MW, Rifas-Shiman SL, Kleinman K, Oken E, Rich-Edwards JW, Taveras EM. Developmental origins of childhood overweight: potential public health impact. Obesity. 2008;16(7):1651–6.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wen X, Triche EW, Hogan JW, Shenassa ED, Buka SL. Prenatal factors for childhood blood pressure mediated by intrauterine and/or childhood growth? Pediatrics. 2011;127:e713–21.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mamun AA, O’Callaghan M, Callaway L, Williams G, Najman J, Lawler DA. Associations of gestational weight gain with offspring body mass index and blood pressure at 21 years of age: evidence from a birth cohort study. Circulation. 2009;119:1720–7.

    Article  PubMed  Google Scholar 

  18. Poston L, Bell R, Croker H, Flynn AC, Godfrey KM, Goff L, et al. Effect of behavioral intervention in obese pregnant women (the UPBEAT study): a multicenter, randomized controlled trial. Lancet Diabetes Endocrinol. 2015;3(10):767–77.

    Article  PubMed  Google Scholar 

  19. Hoet JJ, Hanson MA. Intrauterine nutrition: its importance during critical periods for cardiovascular and endocrine development. J Physiol. 1999;514:617–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hoet JJ, Ozanne S, Reusens B. Influences of pre- and postnatal nutritional exposures on vascular/endocrine systems in animals. Environ Health Perspect. 2000;108(Suppl 3):563–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nathanielsz PW. Life in the womb: the origin of health and disease. Ithaca: Promethean Press; 1999. p. 1–363.

    Google Scholar 

  22. Kitagawa T, Owada M, Urakami T, Yamauchi K. Increased incidence of non-insulin dependent diabetes mellitus among Japanese schoolchildren correlates with an increased intake of animal protein and fat. Clin Pediatr (Phila). 1998;37:111–5.

    Article  CAS  Google Scholar 

  23. Skinner MK. What is an epigenetic transgenerational phenotype? F3 or F2. Reprod Toxicol. 2008;25(1):2–6.

    Article  CAS  PubMed  Google Scholar 

  24. Daxinger L, Whitelaw E. Understanding transgenerational epigenetic inheritance via the gametes in mannals. Nat Rev Genet. 2012;13(3):153–62.

    Article  CAS  PubMed  Google Scholar 

  25. Gluckman PD, Hanson MA, Cooper C, Thornburg KI. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359(1):61–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ferguson-Smith AC, Patti ME. You are what your dad ate. Cell Metab. 2010;13:115–7.

    Article  Google Scholar 

  27. Verier-Mine O. Outcomes in women with a history of gestational diabetes. Screening and prevention of type 2 diabetes. Literature review. Diabetes Metab. 2010;6(Pt2):595–616.

    Article  Google Scholar 

  28. Bilhartz TD, Bilhartz PA, Bilhartz TN, Bilhartz RD. Making use of a natural stress test: pregnancy and cardiovascular risk. J Womens Health (Larchmt). 2011;5:695–701.

    Article  Google Scholar 

  29. Aerts L, Van Assche FA. Animal evidence for the transgenerational development of diabetes mellitus. Int J Biochem Cell Biol. 2006;38:894–903.

    Article  CAS  PubMed  Google Scholar 

  30. Gauguier D, Bihoreau MT, Ktorza A, Berthault MF, Picon L. Inheritance of diabetes mellitus as consequence of gestational hyperglycemia in rats. Diabetes. 1990;6:734–9.

    Article  Google Scholar 

  31. Theys N, Bouckenooghe T, Ahn MT, Remacle C, Reusens B. Maternal low-protein diet alters pancreatic islet mitochondrial function in a sex-specific manner in the adult rat. Am J Physiol Regul Integr Comp Physiol. 2009;5:R1516–25.

    Article  Google Scholar 

  32. Cummins JM. The role of maternal mitochondria during oogenesis, fertilization and embryogenesis. Reprod Biomed Online. 2002;2:176–82.

    Article  Google Scholar 

  33. Polley DC, Spicer MT, Knight AP, Hartley BL. Intrafamilial correlates of overweight and obesity in African-American and native-American grandparents, parents, and children in rural Oklahoma. J Am Diet Assoc. 2005;105:262–5.

    Article  PubMed  Google Scholar 

  34. Davis MM, McGonagle K, Schoeni RF, Stafford F. Grandparental and parental obesity influences on childhood overweight: implications for primary care practice. J Am Board Fam Med. 2008;21:549–54.

    Article  PubMed  Google Scholar 

  35. Tamashiro KL, Terrillion CE, Hyun J, Koenig JI, Moran TH. Prenatal stress or high-fat diet increases susceptibility to diet-induced obesity in rat offspring. Diabetes. 2009;58(5):1116–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lagisz M, Blair H, Kenyon P, Uller T, Raubenheimer D, Nakagawa S. Little appetite for obesity: meta-analysis of the effects of maternal obesogenic diets on offspring food intake and body mass in rodents. Int J Obes. 2015;39(12):1669–78. Review.

    Article  CAS  Google Scholar 

  37. McCurdy CE, Bishop JM, Williams SM, Grayson BE, Smith MS, Friedman JE, et al. Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Invest. 2009;119(2):323–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Maloyan A, Muralimanoharan S, Huffman S, Cox LA, Nathanielsz PW, Myatt L, et al. Identification and comparative analyses of myocardial miRNAs involved in the fetal response to maternal obesity. Physiol Genomics. 2013;45(19):889–900.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Thorn SR, Baquero KC, Newsom SA, El Kasmi KC, Bergman BC, Shulman GI, et al. Early life exposure to maternal insulin resistance has persistent effects on hepatic NAFLD in juvenile nonhuman primates. Diabetes. 2014;63(8):2702–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ford SP, Zhang L, Zhu M, Miller MM, Smith DT, Hess BW, et al. Maternal obesity accelerates fetal pancreatic β-cell but not α-cell development in sheep: prenatal consequences. Am J Physiol Regul Integr Comp Physiol. 2009;297(3):R835–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Long NM, George LA, Uthlaut AB, Smith DT, Nijland MJ, Nathanielsz PW, et al. Maternal obesity and increased nutrient intake before and during gestation in the ewe results in altered growth, adiposity, and glucose tolerance in adult offspring. J Anim Sci. 2010;88(11):3546–53.

    Article  CAS  PubMed  Google Scholar 

  42. Khan I, Dekou V, Hanson M, Poston L, Taylor P. Predictive adaptive responses to maternal high-fat diet prevent endothelial dysfunction but not hypertension in adult rat offspring. Circulation. 2004;110(9):1097–102.

    Article  CAS  PubMed  Google Scholar 

  43. Liang C, Oest ME, Prater MR. Intrauterine exposure to high saturated fat diet elevates risk of adult-onset chronic diseases in C57BL/6 mice. Birth Defects Res B Dev Reprod Toxicol. 2009;86(5):377–84.

    Article  CAS  PubMed  Google Scholar 

  44. Howie GJ, Sloboda DM, Kamal T, Vickers MH. Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet. J Physiol. 2009;587(Pt 4):905–15.

    Article  CAS  PubMed  Google Scholar 

  45. Zhu MJ, Du M, Nathanielsz PW, Ford SP. Maternal obesity up-regulates inflammatory signaling pathways and enhances cytokine expression in the mid-gestation sheep placenta. Placenta. 2010;31(5):387–91.

    Article  CAS  PubMed  Google Scholar 

  46. Tuersunjiang N, Odhiambo JF, Long NM, Shasa DR, Nathanielsz PW, Ford SP. Diet reduction to requirements in obese/overfed ewes from early gestation prevents glucose/insulin dysregulation and returns fetal adiposity and organ development to control levels. Am J Physiol Endocrinol Metab. 2013;305(7):E868–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. George LA, Uthlaut AB, Long NM, Zhang L, Ma Y, Smith DT, et al. Different levels of overnutrition and weight gain during pregnancy have differential effects on fetal growth and organ development. Reprod Biol Endocrinol. 2010;8:75.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Grayson BE, Levasseur PR, Williams SM, Smith MS, Marks DL, Grove KL. Changes in melanocortin expression and inflammatory pathways in fetal offspring of nonhuman primates fed a high-fat diet. Endocrinology. 2010;151(4):1622–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rivera HM, Kievit P, Kirigiti MA, Bauman LA, Baquero K, Blundell P, et al. Maternal high-fat diet and obesity impact palatable food intake and dopamine signaling in nonhuman primate offspring. Obesity. 2015;23(11):2157–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guo F, Jen KL. High-fat feeding during pregnancy and lactation affects offspring metabolism in rats. Physiol Behav. 1995;57(4):681–6.

    Article  CAS  PubMed  Google Scholar 

  51. Srinivasan M, Katewa SD, Palaniyappan A, Pandya JD, Patel MS. Maternal high-fat diet consumption results in fetal malprogramming predisposing to the onset of metabolic syndrome-like phenotype in adulthood. Am J Physiol Endocrinol Metab. 2006;291(4):E792–9.

    Article  CAS  PubMed  Google Scholar 

  52. Rajia S, Chen H, Morris MJ. Maternal overnutrition impacts offspring adiposity and brain appetite markers-modulation by postweaning diet. J Neuroendocrinol. 2010;22(8):905–14.

    CAS  PubMed  Google Scholar 

  53. Chen H, Simar D, Lambert K, Mercier J, Morris MJ. Maternal and postnatal overnutrition differentially impact appetite regulators and fuel metabolism. Endocrinology. 2008;149(11):5348–56.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang L, Long NM, Hein SM, Ma Y, Nathanielsz PW, Ford SP. Maternal obesity in ewes results in reduced fetal pancreatic β-cell numbers in late gestation and decreased circulating insulin concentration at term. Domest Anim Endocrinol. 2011;40(1):30–9.

    Article  PubMed  Google Scholar 

  55. Shasa DR, Odhiambo JF, Long NM, Tuersunjiang N, Nathanielsz PW, Ford SP. Multigenerational impact of maternal overnutrition/obesity in the sheep on the neonatal leptin surge in granddaughters. Int J Obes. 2015;39(4):695–701.

    Article  CAS  Google Scholar 

  56. Fan L, Lindsley SR, Comstock SM, Takahashi DL, Evans AE, He G-W, et al. Maternal high-fat diet impacts endothelial function in nonhuman primate offspring. Int J Obes. 2005;37(2):254–62.

    Article  Google Scholar 

  57. Bayol SA, Simbi BH, Bertrand JA, Stickland NC. Offspring from mothers fed a “junk food” diet in pregnancy and lactation exhibit exacerbated adiposity that is more pronounced in females. J Physiol. 2008;586(Pt 13):3219–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Long NM, Ford SP, Nathanielsz PW. Maternal obesity eliminates the neonatal lamb plasma leptin peak. J Physiol. 2011;589(Pt 6):1455–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Voruganti VS, Jorgensen MJ, Kaplan JR, Kavanagh K, Rudel LL, Temel R, et al. Significant genotype by diet (GxD) interaction effects on cardiometabolic responses to a pedigree-wide, dietary challenge in vervet monkeys (Chlorocebus aethiops sabaeus). Am J Primatol. 2013;75(5):491–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bayol SA, Simbi BH, Fowkes RC, Stickland NC. A maternal “Junk Food” diet in pregnancy and lactation promotes nonalcoholic fatty liver disease in rat offspring. Endocrinology. 2010;151(4):1451–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Khan IY, Taylor PD, Dekou V, Seed PT, Lakasing L, Graham D, et al. Gender-linked hypertension in offspring of lard-fed pregnant rats. Hypertension. 2003;41(1):168–75.

    Article  CAS  PubMed  Google Scholar 

  62. Guida SM, Ghnenis AB, Odhiambo JF, Bell CJ, Nathanielsz PW, Ford SP. Maternal obesity (MO) increases acetyl-CoA carboxylase alpha (ACCα) mRNA and protein expression and alters ACACA gene methylation in day 135 sheep fetal liver. Society for Reproductive Investigation, 63rd Annual Meeting. 2016. Abstract.

    Google Scholar 

  63. Huang Y, Yan X, Zhao JX, Zhu MJ, McCormick RJ, Ford SP, et al. Maternal obesity induces fibrosis in fetal myocardium of sheep. Am J Physiol Endocrinol Metab. 2010;299(6):E968–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ghnenis AB, Odhiambo JF, McCormick RJ, Ford SP. Maternal obesity (MO) during ovine pregnancy leads to increased collagen content and cross-linking in the myocardium of adult F1 but not F2 offspring. J Anim Sci. 2015;93:Suppl. s3/J. Dairy Sci. 2015;98:Suppl. 2. Abstract # 422.

    Google Scholar 

  65. Wang J, Ma H, Tong C, Zhang H, Lawlis GB, Li Y, et al. Overnutrition and maternal obesity in sheep pregnancy alter the JNK-IRS-1 signaling cascades and cardiac function in the fetal heart. FASEB J. 2010;24(6):2066–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yan X, Zhu MJ, Xu W, Tong JF, Ford SP, Nathanielsz PW, et al. Up-regulation of toll-like receptor 4/nuclear factor-κB signaling is associated with enhanced Adipogenesis and insulin resistance in fetal skeletal muscle of obese sheep at late gestation. Endocrinology. 2010;151(1):380–7.

    Article  CAS  PubMed  Google Scholar 

  67. Symonds ME, Mostyn A, Pearce S, Budge H, Stephenson T. Endocrine and nutritional regulation of fetal adipose tissue development. J Endocrinol. 2003;179(3):293–9. Review.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Ford PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ford, S.P., Odhiambo, J.F. (2017). Maternal Obesity and Implications for Fetal Programming. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet, Nutrition, and Fetal Programming. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60289-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60289-9_14

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-60287-5

  • Online ISBN: 978-3-319-60289-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics