Skip to main content

Laccases of Botrytis cinerea

  • Chapter
  • First Online:
Biology of Microorganisms on Grapes, in Must and in Wine

Abstract

Phenolic compounds significantly affect the color, odor and taste of wine. Due to their presumptive beneficial impact on human health, polyphenols in red wine have gained increasing public and scientific interest. Wine phenols are extremely sensitive to oxygen and are easily converted to brownish oxidation products accompanied by loss of nutritive values of the wine. Enzymatic oxidation takes place under the influence of polyphenoloxidases including tyrosinases and laccases. The latter are produced by the phytopathogenic fungus Botrytis cinerea and enter the must with contaminated berries. Although uncontrolled action of Botrytis-laccase has a dramatic impact on wine quality, the oxidative power of the enzyme has been tested for beneficial biotechnogical applications in vinification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DO (2006) Phenolics and ripening in grape berries. Am J Enol Vitic 57:249–256

    CAS  Google Scholar 

  • Adamski J, Kochana J, Kowak P, Parczewski (2016) On the electrochemical biosensing of phenolic compounds in wines. J Food Compos Anal 46:1–6

    Article  CAS  Google Scholar 

  • Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer KM, Pradier JM, Quévillon E, Sharon A, Simon A, ten Have A, Tudzynski B, Tudzynski P, Wincker P, Andrew M, Anthouard V, Beever RE, Beffa R, Benoit I, Bouzid O, Brault B, Chen Z, Choquer M, Collémare J, Cotton P, Danchin EG, Da Silva C, Gautier A, Giraud C, Giraud T, Gonzalez C, Grossetete S, Güldener U, Henrissat B, Howlett BJ, Kodira C, Kretschmer M, Lappartient A, Leroch M, Levis C, Mauceli E, Neuvéglise C, Oeser B, Pearson M, Poulain J, Poussereau N, Quesneville H, Rascle C, Schumacher J, Ségurens B, Sexton A, Silva E, Sirven C, Soanes DM, Talbot NJ, Templeton M, Yandava C, Yarden O, Zeng Q, Rollins JA, Lebrun MH, Dickman M (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 8:e1002230

    Article  Google Scholar 

  • Arranz S, Chiva-Blanch G, Valderas-Martínez P, Medina-Remón A, Lamuela-Raventós RM, Estruch R (2012) Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrient 4:759–781

    Article  CAS  Google Scholar 

  • Azzolini M, Tosi E, Faccio S, Lorenzino M, Torriani S, Zapparoli G (2013) Selection of Botrytis cinerea and Saccharomyces cerevisiae strains for the improvement and valorization of Italian passito style wines. FEMS Yeast Res 13:540–552

    Article  CAS  PubMed  Google Scholar 

  • Baldrian P (2006) Fungal laccases – occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  PubMed  Google Scholar 

  • Bollag JM, Shuttleworth KL, Anderson DH (1988) Laccase-mediated detoxification of phenolic compounds. Appl Environ Microbiol 54:3086–3091

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brenna O, Bianchi E (1994) Immobilized laccase for phenolic removal in must and wine. Biotechnol Lett 16:35–40

    Article  CAS  Google Scholar 

  • Breuil AC, Jeandet P, Adria M, Chopin F, Pirio N, Meunier P, Bessis R (1999) Characterization of a pterostilbene dehydrodimer produced by laccase of Botrytis cinerea. Phytopathology 89:298–302

    Article  CAS  PubMed  Google Scholar 

  • Caridi A, Cufari A, Lovino R, Palumbo R, Tedesco I (2004) Influence of yeast on polyphenol composition of wine. Food Technol Biotechnol 42:37–40

    CAS  Google Scholar 

  • Caruso F, Mendoza L, Castro P, Cotoras M, Aguirre M, Matsuhiro B, Isaacs M, Rossi M, Viglianti A, Antonioletti R (2011) Antifungal activity of resveratrol against Botrytis cinerea is improved using 2-furyl derivates. PLoS One 6:e25421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cichewicz RH, Kouzi SA, Hamann MT (2000) Dimerization of resveratrol by the grapevine pathogen Botrytis cinerea. J Nat Prod 63:29–33

    Article  CAS  PubMed  Google Scholar 

  • Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179:145–150

    Article  CAS  PubMed  Google Scholar 

  • Claus H (2010) Copper-containing oxidases: occurrence in soil microorganisms, properties and applications. In: Sheremati I, Varma A (eds) Soil biology, vol 19, Soil heavy metals. Springer, Heidelberg, pp 281–314. ISBN:978-642-02435-1

    Google Scholar 

  • Claus H, Decker H (2006) Bacterial tyrosinases. Syst Appl Microbiol 29:3–14

    Article  CAS  PubMed  Google Scholar 

  • Claus H, Filip Z (1998) Degradation and transformation of aquatic humic substances by laccase-producing fungi Cladosporium cladosporioides and Polyporus versicolor. Acta Hydrochim Hydrobiol 26:180–185

    Article  CAS  Google Scholar 

  • Claus H, Sabel A, König H (2014) Wine phenols and laccase: an ambivalent relationship. In: El Rayess Y (ed) Wine: phenolic composition, classification and health benefits. Nova publishers, pp 155–185. ISBN:978-1-63321-048-6

    Google Scholar 

  • Cotoras M, Folch C, Mendoza L (2004) Characterization of the antifungal activity on Botrytis cinerea of the natural diterpenoids kaurenoic acid and 3β-hydroxy-kaurenoic acid. J Agric Food Chem 52:2821–2826

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado MU, Pérez-Juan PM, de Castro MDL, Gómez-Nieto MA (2005) A fully automated method for in real time determination of laccase activity in wines. Anal Chim Acta 553:99–104

    Article  Google Scholar 

  • de Beer D, Joubert E, Gelderblom WCA, Manley M (2002) Phenolic compounds: a review of their possible role as in vivo antioxidants of wine. S Afr J Enol Vitic 23:48–61

    Google Scholar 

  • De Leonardis A, Lustrato G, Mavcciola V, Ranalli G (2010) Application of chemical and physical agents in model systems to controlling phenol oxidase enzymes. Eur Food Res Technol 231:603–610

    Article  CAS  Google Scholar 

  • Dewey FM, Hill M, DeScenzo R (2008) Quantification of Botrytis and laccase in wine grapes. Am J Enol Vitic 59:47–54

    CAS  Google Scholar 

  • Dittrich HH, Großmann M (2010) Mikrobiologie des Weines, 4 Auflage. Ulmer Verlag, Stuttgart

    Google Scholar 

  • Du Toit WJ, Marais J, Pretorius IS, Du Toit M (2006) Oxygen in must and wine: a review. S Afr J Enol Vitic 27:76–94

    Google Scholar 

  • Eder R, Wendelin S (2002) Phenolzusammensetzung und antioxidative Kapazität von Trauben und Weinen. ALVA-Jahrestagung, Klosterneuburg, pp 293–296

    Google Scholar 

  • El Rayess Y (2014) Wine: phenolic composition, classification and health benefits. Nova publishers, New York. ISBN:978-1-63321-048-6

    Google Scholar 

  • Espín JC, Wichers HJ (2000) Study of the oxidation of resveratrol catalyzed by polyphenol oxidase. Effect of polyphenol oxidase, laccase and peroxidase on the antiradical capacity of resveratrol. J Food Biochem 24:225–250

    Article  Google Scholar 

  • Favaron F, Luchetta M, Odorizzi S, Pais da Cunha AT, Sella L (2009) The role of grape polyphenols on trans-resveratrol activity against Botrytis cinerea and of fungal laccase on the solubility of putative grape PR proteins. J Plant Pathol 91:579–588

    CAS  Google Scholar 

  • Fowler ZL, Baron CM, Panepinto JC, Koffas MAG (2011) Melanization of flavonoids by fungal and bacterial laccases. Yeast 28:181–188

    Article  CAS  PubMed  Google Scholar 

  • Fronk P, Hartmann H, Bauer M, Solem E, Jaenicke E, Tenzer S, Decker H (2015) Polyphenol oxidase from Riesling and Dornfelder wine grapes (Vitis vinifera) is a tyrosinase. Food Chem 183:49–57

    Article  CAS  PubMed  Google Scholar 

  • Gamella A, Campuzano S, Reviejo AJ, Pingarrón JM (2006) Electrochemical estimation of the polyphenol index in wines using a laccase biosensor. J Agric Food Chem 54:7960–7967

    Article  CAS  PubMed  Google Scholar 

  • Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:269–385

    Article  Google Scholar 

  • Gigi O, Marbach I, Mayer AM (1980) Induction of laccase formation in Botrytis. Phytochemistry 19:2273–2275

    Article  CAS  Google Scholar 

  • Gil-ad NL, Bar-Nun N, Mayer AM (2001) The possible function of the glucan sheath of Botrytis cinerea: effects on the distribution of enzyme activities. FEMS Microbiol Lett 199:103–113

    Article  Google Scholar 

  • Grassin C, Dubourdieu D (1989) Quantitative determination of Botrytis laccase in musts and wines by the syringaldazine test. J Sci Food Agric 48:369–376

    Article  CAS  Google Scholar 

  • Han X, Shen T, Lou H (2007) Dietary polyphenols and their biological significance. Int J Mol Sci 8:950–988

    Article  CAS  PubMed Central  Google Scholar 

  • Hanhineva K, Törrönen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkänen H, Poutanen K (2010) Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 11:1365–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He S, Sun C, Pan Y (2008) Red wine polyphenols for cancer prevention. Int J Mol Sci 9:842–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henríquez-Aedo K, Durán D, Garcia A, Hengst MB, Aranda M (2016) Identification of biogenic amines-producing lactic acid bacteria isolated from spontaneous malolactic fermentation of Chilean red wines. LWT Food Sci Technol 68:183–189

    Article  Google Scholar 

  • Hirschhäuser S, Fröhlich J (2007) Multiplex PCR for species discrimination of Sclerotiniaceae by novel laccase introns. Int J Food Microbiol 118:151–157

    Article  PubMed  Google Scholar 

  • Jeon JR, Baldrian P, Murugesan K, Chang YS (2012) Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications. J Microbiol Biotechnol 5:318–332

    Article  Google Scholar 

  • Johannes C, Majcherczyk A (2000) Laccase activity tests and laccase inhibitors. J Biotechnol 78:193–199

    Article  CAS  PubMed  Google Scholar 

  • Kassemeyer HH, Berkelmann-Löhnertz BB (2009) Fungi of grapes. In: König H, Unden F, Fröhlich J (eds) Biology of microorganisms on grapes, in must and wine. Springer, Berlin, pp 61–87

    Chapter  Google Scholar 

  • Kittl R, Mueangtoom K, Gonaus C, Khazaneh ST, Sygmund C, Haltrich D, Ludwig R (2012) A chloride tolerant laccase from the plant pathogen ascomycete Botrytis aclada expressed at high levels in Pichia pastoris. J Biotechnol 157:304–314

    Article  CAS  PubMed  Google Scholar 

  • Landete JM (2012) Updated knowledge about polyphenols: functions, bioavailability, metabolism, and health. Crit Rev Food Sci Nutr 52:936–948

    Article  CAS  PubMed  Google Scholar 

  • Landete JM, Rodríguez H, de las Rivas B, Muñoz R (2007) High-added-value antioxidants obtained from the degradation of wine phenolics by Lactobacillus plantarum. J Food Prot 70:2670–2675

    Article  CAS  PubMed  Google Scholar 

  • Lettera V, Pezzella C, Cicatiello P, Piscitelli A, Giacobelli VG, Galano E, Amoresano A, Sannia G (2016) Efficient immobilization of a fungal laccase and its exploitation in fruit juice clarification. Food Chem 196:1272–1278

    Article  CAS  PubMed  Google Scholar 

  • Li H, Förstermann U (2012) Red wine and cardiovascular health. Circ Res 111:959–961

    Article  CAS  PubMed  Google Scholar 

  • Li H, Guo A, Wang H (2008) Mechanisms of oxidative browning in wine. Food Chem 108:1–13

    Article  CAS  Google Scholar 

  • Li H, Xia N, Förstermann U (2012) Cardiovascular effects and molecular targets of resveratrol. Nitric Oxide 26:102–110

    Article  PubMed  Google Scholar 

  • Lustrato G, De Leonardis A, Macciola V, Ranalli G (2015) Preliminary lab scale of advanced techniques as new tools to reduce ethylphenols content in synthetic wine. Agro Food Technol HI-Tech 26:51–54

    CAS  Google Scholar 

  • Macheix JJ, Sapis JC, Fleuriet A (1991) Phenolic compounds and polyphenolxidases in relation to browning in grapes and wines. Crit Rev Food Sci Nutr 30:441–486

    Article  CAS  PubMed  Google Scholar 

  • Magyar I, Soós J (2016) Botrytized wines – current perspectives. Int. J Wine Res 8:29–39

    Article  Google Scholar 

  • Maier G, Dietrich H, Wucherpfennig K (1990) Winemaking without SO2 – with the aid of enzymes? Weinwirtsch Tech 126:18–22

    Google Scholar 

  • Marbach I, Harel E, Mayer AM (1985) Pectin, a second inducer for laccase production by Botrytis cinerea. Phytochemistry (11):2559–2561

    Google Scholar 

  • Martínková L, Kotik M, Marková E, Homolka L (2016) Biodegradation of phenolic compounds by Basidiomycota and its phenol oxidases: a review. Chemosphere 149:373–382

    Article  PubMed  Google Scholar 

  • Mayer AM (2006) Polyphenol oxidases in plants and fungi: going place? A review. Phytochemistry 67:2318–2331

    Article  CAS  PubMed  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    Article  CAS  PubMed  Google Scholar 

  • Minussi RC, Pastore GM, Durán N (2002) Potential applications of laccase in the food industry. Trends Food Sci Technol 13:205–216

    Article  CAS  Google Scholar 

  • Minussi RC, Rossi M, Bolgna L, Rotilio D, Pastore GM, Durán N (2007) Phenols removal in musts: strategy for wine stabilization by laccase. J Mol Catal B: Enzym 45:102–107

    Article  CAS  Google Scholar 

  • Moreno-Arribas MV, Polo MC (2010) Wine chemistry and biochemistry. Springer Science and Business Media, New York

    Google Scholar 

  • Oak MH, Bedoi JE, Schini-Kerth V (2005) Antiangiogenic properties of natural polyphenols from red wine and green tea. J Nutr Biochem 16:1–8

    Article  CAS  PubMed  Google Scholar 

  • Oliveira CM, Ferreira ACS, De Freitas V, Silva AMS (2011) Oxidation mechanisms occurring in wines. Food Res Int 44:1115–1126

    Article  CAS  Google Scholar 

  • Pezet R (1998) Purification and characterization of a 32-kDa laccase-like stilbene oxidase produced by Botrytis cinerea Pers.:Fr. FEMS Microbiol Lett 167:203–208

    Article  CAS  Google Scholar 

  • Pezet R, Pont V, Hoang-Van K (1991) Evidence of oxidative detoxification of pterostilbene and resveratrol by a laccase-like stilbene oxidase produced by Botrytis cinerea. Physiol Mol Plant Pathol 39:441–450

    Article  CAS  Google Scholar 

  • Postolache E, Popescu C, Ciubucă A, Râpeanu G, Bulancea M (2012) Dynamics of oxidative enzyme activity during the white grapes winemaking. J Environ Prot Ecol 13:1608–1615

    CAS  Google Scholar 

  • Preti R, Vieri S, Vinci G (2016) Biogenic amine profiles and antioxidant properties of Italian red wines from different price categories. J Food Compos Anal 46:7–14

    Article  CAS  Google Scholar 

  • Reiss R, Ihssen J, Richter M, Eichhorn E, Schilling B, Thöny-Meyer L (2013) Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS One 8(6):e65633. doi:10.1371/journal.pone.0065633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riebel M, Sabel A, Claus H, Fronk P, Xia N, Li H, König H, Decker H (2015) Influence of laccase and tyrosinase on the antioxidant capacity of selected phenolic compounds on human cell lines. Molecules 20:17194–17207

    Article  CAS  PubMed  Google Scholar 

  • Rupp S, Weber RWS, Rieger D, Detzel D, Hahn M (2017) Spread of Botrytis cinerea strains with multiple fungicide resistance in German horticulture. Front Microbiol 7:2075. doi:10.3389/fmicb.2016.02075

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabel A, Martens S, Petri A, König H, Claus H (2014) Wickerhamomyces anomalus AS1: a new strain with potential to improve wine aroma. Ann Microbiol 64:483–491

    Article  CAS  Google Scholar 

  • Schouten A, Wagemakers L, Stefanato FL, van der Kaaij RM, van Kan JAL (2002) Resveratrol acts as a natural profungicide and induces self-intoxication by a specific laccase. Mol Microbiol 43:883–894

    Article  CAS  PubMed  Google Scholar 

  • Schwentke J, Sabel A, Petri A, König H, Claus H (2014) The wine yeast Wickerhamomyces anomalus AS1 secretes a multifunctional exo-β-1,3 glucanase with implications for winemaking. Yeast 31:349–359

    Article  CAS  PubMed  Google Scholar 

  • Sebastian P, Herr P, Fischer U, König H (2011) Molecular identification of lactic acid bacteria occurring in must and wine. S Afr J Enol Vitic 32:300–309

    CAS  Google Scholar 

  • Servili M, de Stefano G, Piacquadio P, Sciancalepore V (2000) A novel method for removing phenols from grape must. Am J Enol Vitic 51:357–361

    CAS  Google Scholar 

  • Sivertsen HK, Dewey FM, Heymann H (2005) Relationship between sensory descriptive analysis and levels of Botrytis antigens in dessert wines. Am J Enol Vitic 56:330–335

    Google Scholar 

  • Sjaarda CP, Abubaker KS, Castle AJ (2015) Induction of lcc2 expression and activity by Agaricus bisporus provides defence against Trichoderma aggressivum toxic extracts. Microbiol Biotechnol 8:918–929

    Article  CAS  Google Scholar 

  • Soleas GJ, Diamandis EP, Goldberg DM (1997) Resveratrol: a molecule whose time has come? and gone? Clin Biochem 30:91–113

    Article  CAS  PubMed  Google Scholar 

  • Sponholz WR (2000) Suberase: eine biotechnologische Möglichkeit Korken zu reinigen. Schweiz Zeitschr Obst Weinbau 24:621–625

    Google Scholar 

  • Stevenson DE, Hurst RD (2007) Polyphenolic phytochemicals – just antioxidants or much more? Cell Mol Life Sci 64:2900–2916

    Article  CAS  PubMed  Google Scholar 

  • Strong PJ, Claus H (2011) Laccase: a review of its past and its future in bioremediation. Crit Rev Environ Sci Technol 41:373–434

    Article  Google Scholar 

  • Stuart JA, Robb EL (2013) Bioactive polyphenols from wine grapes. Springer briefs in cell biology. Springer, London

    Book  Google Scholar 

  • Viterbo A, Yagen B, Mayer AM (1993a) Cucurbitacins, attack enzymes and laccase in Botrytis cinerea. Phytochemistry 32:61–65

    Article  Google Scholar 

  • Viterbo A, Yagen B, Mayer AM (1993b) Induction of laccase formation in Botrytis and its inhibition by cucurbitacin – is gallic acid the true inducer? Phytochemistry 34:47–49

    Article  CAS  Google Scholar 

  • Walker JRL (1975) The biology of plant phenolics. Edward Arnold (Publishers) Limited, London

    Google Scholar 

  • Zinnai A, Venturi F, Sanmartin C, Quartacci MF, Andrich G (2013) Chemical and laccase catalyzed oxidation of gallic acid: determination of kinetic parameters. Res J Biotechnol 8:62–65

    CAS  Google Scholar 

  • Zivkovic K, König H, Claus H (2011) Wirkung von Bentonit auf die Laccase-Aktivität in Most und Wein. Dtsch Lebensmitt Rundsch 107:575–582

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Claus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Claus, H. (2017). Laccases of Botrytis cinerea . In: König, H., Unden, G., Fröhlich, J. (eds) Biology of Microorganisms on Grapes, in Must and in Wine. Springer, Cham. https://doi.org/10.1007/978-3-319-60021-5_14

Download citation

Publish with us

Policies and ethics