Skip to main content

Multivariate Data Analysis by Means of Self-Organizing Maps

  • Chapter
  • First Online:
Ecological Informatics

Abstract

Ecological data range widely in variability, showing non-linear and complex relationships among variables. Although conventional multivariate analyses are useful tools to explore ecological data, data mining by non-linear methods is preferred because a high degree of complexity resides in ecological phenomena. One of these methods is artificial neural networks in machine learning based on biologically inspired learning algorithms. Self-organizing map (SOM) is one of the most popular unsupervised artificial neural networks and are commonly used to seek patterns and clusters in ecological data. SOMs are versatile in analysing non-linear and complex data, which are observed frequently in ecological systems. In this paper, we explain the theory of SOMs and their application in ecological modelling, with a focus on learning processes, visualization, preprocessing of input data, and interpretation of results. We also discuss the advantages and disadvantages of SOM approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bação F, Lobo V, Painho M (2005) The self-organizing map, the Geo-SOM, and relevant variants for geosciences. Comput Geosci 31:155–163

    Article  Google Scholar 

  • Bae M-J, Kwon Y-S, Hwang S-J, Park Y-S (2008) Comparison of four different ordination methods for patterning water quality of agricultural reservoirs. Korean J Limnol 41:1–10

    Google Scholar 

  • Balasubramanian M, Schwartz EL, Tenebaum JB et al (2002) The Isomap algorithm and topological stability. Science 295:7a

    Article  Google Scholar 

  • Bauer H-U, Villmann T (1997) Growing a hypercubical output space in a self-organizing feature map. IEEE Trans Neural Netw 8:218–226

    Article  CAS  Google Scholar 

  • Blayo F, Demartines P (1991) Data analysis: How to compare Kohonen neural networks to other techniques? Proceedings of IWANN’91. Springer, Berlin

    Google Scholar 

  • Borg I, Groenen P (1997) Modern multidimensional scaling: theory and applications. Springer, New York

    Book  Google Scholar 

  • Bottin M, Giraudel J-L, Lek S, Tison-Rosebery J (2014) diatSOM: a R-package for diatom biotypology using self-organizing maps. Diatom Res 29:5–9

    Article  Google Scholar 

  • Cayrou J, Compin A, Giani N, Céréghino R (2000) Species associations in lotic macroinvertebrates and their use for river typology: example of the Adour-Garonne drainage basin (France). Annales de Limnologie-Int J Limnol 36:189–202

    Article  Google Scholar 

  • Céréghino R, Park Y-S (2009) Review of the self-organizing map (SOM) approach in water resources: commentary. Environ Model Softw 24:945–947

    Article  Google Scholar 

  • Céréghino R, Giraudel J, Compin A (2001) Spatial analysis of stream invertebrates distribution in the Adour-Garonne drainage basin (France), using Kohonen self-organizing maps. Ecol Model 146:167–180

    Article  Google Scholar 

  • Chan WS, Recknagel F, Cao H, Park HD (2007) Elucidation and short-term forecasting of microcystin concentrations in Lake Suwa (Japan) by means of artificial neural networks and evolutionary algorithms. Water Res 41:2247–2255

    Article  CAS  Google Scholar 

  • Chon T-S (2011) Self-organizing maps applied to ecological sciences. Ecol Inform 6:50–61

    Article  Google Scholar 

  • Chon T-S, Park Y-S (2006) Ecological informatics as an advanced interdisciplinary interpretation of ecosystems. Ecol Inform 1:213–217

    Article  Google Scholar 

  • Chon T-S, Park YS, Moon KH, Cha EY (1996) Patternizing communities by using an artificial neural network. Ecol Model 90:69–78

    Article  Google Scholar 

  • Chon T-S, Park Y-S, Park KY et al (2004) Implementation of computational methods to pattern recognition of movement behavior of Blattella germanica (Blattaria: Blattellidae) treated with Ca2+ signal inducing chemicals. Appl Entom Zool 39:79–96

    Article  Google Scholar 

  • Daniel CL, Scott AR (2007) Abiotic and biotic factors explain independent gradients of plant community composition in ponderosa pine forests. Ecol Model 205:231–240

    Article  Google Scholar 

  • Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 2:224–227

    Article  Google Scholar 

  • De Cáceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684

    Article  Google Scholar 

  • Dittenbach M, Rauber A, Merkl D (2002) Uncovering hierarchical structure in data using the growing hierarchical self-organizing map. Neurocomput 48:199–216

    Article  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Ellison GN, Gotelli N (2004) A primer of ecological statistics. Sinauer, Sunderland, MA

    Google Scholar 

  • Foody GM (1999) The continuum of classification fuzziness in thematic mapping. Photogramm Eng Remote Sens 65:443–452

    Google Scholar 

  • Fort J-C (2006) SOM’s mathematics. Neural Netw 19:812–816

    Article  CAS  Google Scholar 

  • Friedel MJ (2012) Data-driven modeling of surface temperature anomaly and solar activity trends. Environ Model Softw 37:217–232

    Article  Google Scholar 

  • Gauch HG (1982) Multivariate analysis in community ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gevrey M, Rimet F, Park YS et al (2004) Water quality assessment using diatom assemblages and advanced modelling techniques. Freshw Biol 49:208–220

    Article  CAS  Google Scholar 

  • Giraudel J, Lek S (2001) A comparison of self-organizing map algorithm and some conventional statistical methods for ecological community ordination. Ecol Model 146:329–339

    Article  Google Scholar 

  • Griebeler EM, Seitz A (2006) The use of Markovian metapopulation models: reducing the dimensionality of transition matrices by self-organizing Kohonen networks. Ecol Model 192:271–285

    Article  Google Scholar 

  • Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetation 42:47–58

    Article  Google Scholar 

  • Hruschka H, Natter M (1999) Comparing performance of feedforward neural nets and K-means for cluster-based market segmentation. Eur J Oper Res 114:346–353

    Article  Google Scholar 

  • Huntley B (1999) Species distribution and environmental change: considerations from the site to the landscape scale. Ecosystem management: questions for science and society. Royal Holloway Institute for Environmental Research, Virginia Water

    Google Scholar 

  • Hyun K, Song M-Y, Kim S, Chon T-S (2005) Using an artificial neural network to patternize long-term fisheries data from South Korea. Aquat Sci 67:382–389

    Article  Google Scholar 

  • Jongman RH, Ter Braak CJ, Van Tongeren OF (1995) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kalteh AM, Hjorth P, Berndtsson R (2008) Review of the self-organizing map (SOM) approach in water resources: analysis, modelling and application. Environ Model Softw 23:835–845

    Article  Google Scholar 

  • Kaski S (1997) Data exploration using self-organizing maps. Acta polytechnica scandinavica, mathematics, computing and management in engineering series no. 82. Finnish Academy of Technology, Espoo, Finland

    Google Scholar 

  • Kiviluoto K (1996) Topology preservation in self-organizing maps. In: Proceedings of ICNN’96. IEEF. Service Center, Piscataway

    Google Scholar 

  • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69

    Article  Google Scholar 

  • Kohonen T (1993) Physiological interpretation of the self-organizing map algorithm. Neural Netw 6:895–905

    Google Scholar 

  • Kohonen T (2001) Self-organizing maps. Springer, Berlin

    Book  Google Scholar 

  • Kohonen T, Kaski S, Lappalainen H (1997) Self-organized formation of various invariant-feature filters in the adaptive-subspace SOM. Neural Comput 9:1321–1344

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Mahechaa MD, Martínez A, Lischeida G, Beckc E (2007) Nonlinear dimensionality reduction: alternative ordination approaches for extracting and visualizing biodiversity patterns in tropical montane forest vegetation data. Ecol Inform 2:138–149

    Article  Google Scholar 

  • Marsland S, Shapiro J, Nehmzow U (2002) A self-organising network that grows when required. Neural Netw 15:1041–1058

    Article  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM, Greneden Beach, Oregon

    Google Scholar 

  • Melssen W, Smits J, Rolf G, Kateman G (1993) Two-dimensional mapping of IR spectra using a parallel implemented self-organising feature map. Chemom Intell Lab Syst 18:195–204

    Article  CAS  Google Scholar 

  • Melssen W, Smits J, Buydens L, Kateman G (1994) Using artificial neural networks for solving chemical problems: Part II. Kohonen self-organising feature maps and Hopfield networks. Chemom Intell Lab Syst 23:267–291

    Article  CAS  Google Scholar 

  • Nikolic N, Park Y-S, Sancristobal M et al (2009) What do artificial neural networks tell us about the genetic structure of populations? The example of European pig populations. Genet Res 91:121–132

    Article  CAS  Google Scholar 

  • Obach M, Wagner R, Werner H, Schmidt H-H (2001) Modelling population dynamics of aquatic insects with artificial neural networks. Ecol Model 146:207–217

    Article  Google Scholar 

  • Osborne JW, Overbay A (2004) The power of outliers (and why researchers should always check for them). Pract Assess Res Eval 9:1–12

    Google Scholar 

  • Paini DR, Worner SP, Cook DC et al (2010) Using a self-organizing map to predict invasive species: sensitivity to data errors and a comparison with expert opinion. J Appl Ecol 47:290–298

    Article  Google Scholar 

  • Park Y-S, Chon T-S (2007) Biologically-inspired machine learning implemented to ecological informatics. Ecol Model 203:1–7

    Article  Google Scholar 

  • Park Y-S, Chon T-S (2015) Editorial: ecosystem assessment and management. Ecol Inform 29:93–95

    Article  Google Scholar 

  • Park Y-S, Chung Y-J (2006) Hazard rating of pine trees from a forest insect pest using artificial neural networks. For Ecol Manage 222:222–233

    Article  Google Scholar 

  • Park Y-S, Céréghino R, Compin A, Lek S (2003) Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecol Model 160:265–280

    Article  Google Scholar 

  • Park Y-S, Chon T-S, Kwak I-S, Lek S (2004) Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks. Sci Total Environ 327:105–122

    Article  CAS  Google Scholar 

  • Park Y-S, Chung N-I, Choi K-H et al (2005) Computational characterization of behavioral response of medaka (Oryzias latipes) treated with diazinon. Aquat Toxicol 71:215–228

    Article  CAS  Google Scholar 

  • Park Y-S, Tison J, Lek S et al (2006) Application of a self-organizing map to select representative species in multivariate analysis: a case study determining diatom distribution patterns across France. Ecol Inform 1:247–257

    Article  Google Scholar 

  • Park Y-S, Kwon Y-S, Hwang S-J, Park S (2014) Characterizing effects of landscape and morphometric factors on water quality of reservoirs using a self-organizing map. Environ Model Softw 55:214–221

    Article  Google Scholar 

  • Peeters L, Dassargues A (2006) Comparison of Kohonen’s self-organizing map algorithm and principal component analysis in the exploratory data analysis of a groundwater quality dataset. Proceedings of 6th international conference on geostatistics for environmental applications. Rhodos, Greece, 25–27 October 2006, pp 1–12

    Google Scholar 

  • Recknagel F, French M, Harkonen P, Yabunaka K (1997) Artificial neural network approach for modelling and prediction of algal blooms. Ecol Model 96(1–3):11–28

    Article  CAS  Google Scholar 

  • Recknagel F, Talib A, van der Molen D (2006) Phytoplankton community dynamics of two adjacent Dutch lakes in response to seasons and eutrophication control unraveled by non-supervised artificial neural networks. Ecol Inform 1:277–286

    Article  Google Scholar 

  • Ritter H, Schulten K (1988) Convergence properties of Kohonen’s topology conserving maps: fluctuations, stability, and dimension selection. Biol Cybern 60:59–71

    Article  Google Scholar 

  • Roux O, Gevrey M, Arvanitakis L et al (2007) ISSR-PCR: tool for discrimination and genetic structure analysis of Plutella xylostella populations native to different geographical areas. Mol Phylogenet Evol 43:240–250

    Article  CAS  Google Scholar 

  • Samarasinghe S, Strickert G (2013) Mixed-method integration and advances in fuzzy cognitive maps for computational policy simulations for natural hazard mitigation. Environ Model Softw 39:188–200

    Article  Google Scholar 

  • Shepard RN (1962) The analysis of proximities: multidimensional scaling with an unknown distance function. II. Psychometrika 27:219–246

    Article  Google Scholar 

  • Strebel K, Espinosa G, Giralt F et al (2013) Modeling airborne benzene in space and time with self-organizing maps and Bayesian techniques. Environ Model Softw 41:151–162

    Article  Google Scholar 

  • Tenenbaum YB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290:2319–2323

    Article  CAS  Google Scholar 

  • Tison J, Giraudel J, Coste M et al (2004) Use of unsupervised neural networks for ecoregional zoning of hydrosystems through diatom communities: case study of Adour-Garonne watershed (France). Arch Hydrobiol 159:409–422

    Article  Google Scholar 

  • Ultsch A, Siemon HP (1990) Kohonen’s self organizing feature maps for exploratory data analysis. In: Proceedings of INNC’90. Kluwer Academic, Dordrecht

    Google Scholar 

  • Vesanto J (1999) SOM-based data visualization methods. Intelligent Data Anal 3:111–126

    Article  Google Scholar 

  • Villmann T, Bauer H-U (1998) Applications of the growing self-organizing map. Neurocomputing 21:91–100

    Article  Google Scholar 

  • Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  • Wehrens R (2015) Package ‘kohonen’. version 2.0.19

    Google Scholar 

  • Wilppu E (1997) The visualisation capability of self-organizing maps to detect deviations in distribution control. TUCS technical report no. 153. Turku Centre for Computer Science, Finland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Seuk Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Park, YS., Chon, TS., Bae, MJ., Kim, DH., Lek, S. (2018). Multivariate Data Analysis by Means of Self-Organizing Maps. In: Recknagel, F., Michener, W. (eds) Ecological Informatics. Springer, Cham. https://doi.org/10.1007/978-3-319-59928-1_12

Download citation

Publish with us

Policies and ethics