Skip to main content

Estimation of Local Conduction Velocity from Myocardium Activation Time: Application to Cardiac Resynchronization Therapy

  • Conference paper
  • First Online:
Functional Imaging and Modelling of the Heart (FIMH 2017)

Abstract

As models of cardiac electrophysiology (EP) are maturing, an increasing effort is being put in their translation to the bed side, in particular for abnormal cardiac rhythm diagnosis and therapy planning. However, the parameters that govern these models need to be estimated from noisy and sparse clinical data in an efficient and precise way, which is still an unsolved challenge. Invasive cardiac mapping provides the richest EP information available today. This paper proposes a new method to estimate a local map of electrical conductivities of the bi-ventricular heart by applying the back-propagation error concept, widely used in neural networks. The method works when either endocardial or epicardial activation time maps are available, and can cope with heterogeneous cardiac tissue. The method was evaluated on synthetic data, showing significantly increased performance in goodness of fit compared to a global parameter estimation approach. The resulting predictive power of the personalized model for cardiac resynchronization therapy was then assessed on 16 swine models of left bundle branch block with rich imaging and EP data before and after CRT. With the proposed personalization, the average error in activation time post CRT was \(10 \pm 4.5\) ms, lower than the observed pre/post-CRT difference of \(26.3 \pm 16.8\) ms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arevalo, H.J., Vadakkumpadan, F., Guallar, E., Jebb, A., Malamas, P., Wu, K.C., Trayanova, N.A.: Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nat. Commun. 7 (2016)

    Google Scholar 

  2. Bayer, J.D., Roney, C.H., Pashaei, A., Jaïs, P., Vigmond, E.J.: Novel radiofrequency ablation strategies for terminating atrial fibrillation in the left atrium: a simulation study. Front. Physiol. 7, 108 (2016)

    Article  Google Scholar 

  3. Chabiniok, R., Wang, V.Y., Hadjicharalambous, M., Asner, L., Lee, J., Sermesant, M., Kuhl, E., Young, A.A., Moireau, P., Nash, M.P., et al.: Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface Focus 6(2), 20150083 (2016)

    Article  Google Scholar 

  4. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  5. Marchesseau, S., Delingette, H., Sermesant, M., Cabrera-Lozoya, R., Tobon-Gomez, C., Moireau, P., I Ventura, R.F., Lekadir, K., Hernandez, A., Garreau, M., et al.: Personalization of a cardiac electromechanical model using reduced order unscented kalman filtering from regional volumes. MedIA 17(7), 816–829 (2013)

    Google Scholar 

  6. Neumann, D., Mansi, T., Itu, L., Georgescu, B., Kayvanpour, E., Sedaghat-Hamedani, F., Amr, A., Haas, J., Katus, H., Meder, B., et al.: A self-taught artificial agent for multi-physics computational model personalization. MedIA 34, 52–64 (2016)

    Google Scholar 

  7. Powell, M.J.: The bobyqa algorithm for bound constrained optimization without derivatives. Cambridge NA Report NA2009/06, University of Cambridge, Cambridge (2009)

    Google Scholar 

  8. Relan, J., Chinchapatnam, P., Sermesant, M., Rhode, K., Ginks, M., Delingette, H., Rinaldi, C.A., Razavi, R., Ayache, N.: Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia. Interface Focus 1, 396–407 (2011)

    Article  Google Scholar 

  9. Rigol, M., Solanes, N., Fernandez-Armenta, J., Silva, E., Doltra, A., Duchateau, N., Barcelo, A., Gabrielli, L., Bijnens, B., Berruezo, A., et al.: Development of a swine model of left bundle branch block for experimental studies of cardiac resynchronization therapy. JCTR 6(4), 616–622 (2013)

    Google Scholar 

  10. Sermesant, M., Chabiniok, R., Chinchapatnam, P., Mansi, T., Billet, F., Moireau, P., Peyrat, J.M., Wong, K., Relan, J., Rhode, K., et al.: Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in crt: a preliminary clinical validation. MedIA 16(1), 201–215 (2012)

    Google Scholar 

  11. Sermesant, M., Moireau, P., Camara, O., Sainte-Marie, J., Andriantsimiavona, R., Cimrman, R., Hill, D.L., Chapelle, D., Razavi, R.: Cardiac function estimation from mri using a heart model and data assimilation: advances and difficulties. MedIA 10(4), 642–656 (2006)

    MATH  Google Scholar 

  12. Sohal, M., Shetty, A., Niederer, S., Lee, A., Chen, Z., Jackson, T., Behar, J.M., Claridge, S., Bostock, J., Hyde, E., et al.: Mechanistic insights into the benefits of multisite pacing in cardiac resynchronization therapy: the importance of electrical substrate and rate of left ventricular activation. Heart Rhythm 12(12), 2449–2457 (2015)

    Article  Google Scholar 

  13. Soto-Iglesias, D., Butakoff, C., Andreu, D., Fernández-Armenta, J., Berruezo, A., Camara, O.: Integration of electro-anatomical and imaging data of the left ventricle: an evaluation framework. MedIA 32, 131–144 (2016)

    Google Scholar 

  14. Wallman, M., Smith, N.P., Rodriguez, B.: A comparative study of graph-based, eikonal, and monodomain simulations for the estimation of cardiac activation times. IEEE Trans. Biomed. Eng. 59(6), 1739–1748 (2012). http://ieeexplore.ieee.org/document/6178774/

    Article  Google Scholar 

  15. Wallman, M., Smith, N.P., Rodriguez, B.: Computational methods to reduce uncertainty in the estimation of cardiac conduction properties from electroanatomical recordings. MedIA 18(1), 228–240 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Mansi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pheiffer, T. et al. (2017). Estimation of Local Conduction Velocity from Myocardium Activation Time: Application to Cardiac Resynchronization Therapy. In: Pop, M., Wright, G. (eds) Functional Imaging and Modelling of the Heart. FIMH 2017. Lecture Notes in Computer Science(), vol 10263. Springer, Cham. https://doi.org/10.1007/978-3-319-59448-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59448-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59447-7

  • Online ISBN: 978-3-319-59448-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics